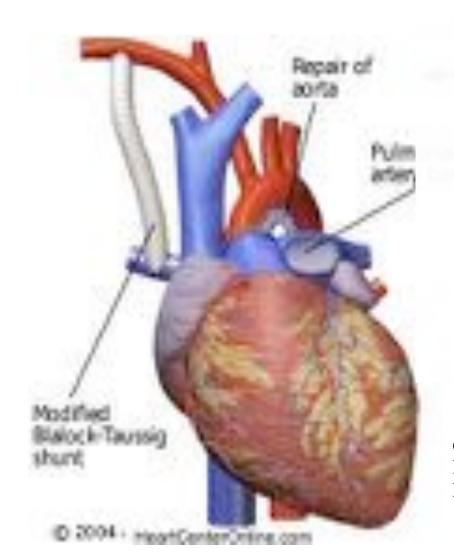
Hypoplasie du cœur gauche Anesthésie-Réanimation


DIU RCC 2016-2017 Ph Mauriat

Prise en charge AR

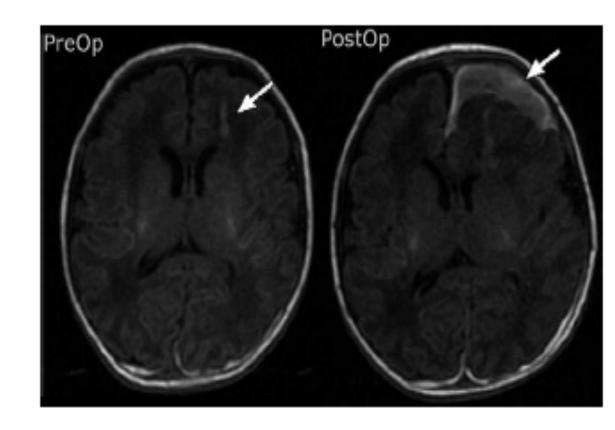
- Première étape en période néonatale
- 3 interventions possibles :
 - Norwood
 - Sano
 - Hybride

Norwood Procedure

 $\begin{array}{c} SpO2 \pm 85\% \\ SvjO2 \pm 60\% \end{array}$

Circulations systémique et pulmonaire en parallèle Equilibre débit pulmonaire/débit systémique Rapport des RVP/RVS

Evaluation post-natale


- SpO₂ NIRS préopératoire
- Echo cardio:
 - fonction VU, CIA (<u>± restrictive</u>), lésions associées
- Poumons : tr de ventilation, pneumopathie
- Défaillance multi-viscérale : foie, rein
- Atteintes neurologiques
 - scanner, IRM, ETF
- Décision d'intervention ou d'accompagnement

Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion The Journal of Thoracic and Cardiovascular Surgery • December 2005

Catherine L. Dent, MD,^a James P. Spaeth, MD,^f Blaise V. Jones, MD,^e Steven M. Schwartz, MD,^a Tracy A. Glauser, MD,^b Barbara Hallinan, MD, PhD,^b Jeffrey M. Pearl, MD,^d Philip R. Khoury, MS,^{a,c} and C. Dean Kurth, MD^f

- 22 NN HypoVG = Norwood
- IRM + NIRS pré et post op
- Lésions ischémiques
 - 25% en préopératoire
 - 73% en post op
- rSO2 < 45% pdt ≥ 3 heures

=> lésions IRM

Perioperative cerebral oxygen saturation in neonates with hypoplastic left heart syndrome and childhood neurodevelopmental outcome

The Journal of Thoracic and Cardiovascular Surgery • November 2013

George M. Hoffman, MD, a,b Cheryl L. Brosig, PhD, a,b,c Kathleen A. Mussatto, BSN, PhD, a,c,d James S. Tweddell, MD, a,b,c and Nancy S. Ghanayem, MD,b

51 Norwood néonatal

à 7,1 ans \pm 1, des 44 survivants

Evaluation du neuro developpement de 21 patients

Test : intégration vue-motricité (VMI) objectif principal

Index ND:

Performance cognitive

Attention

Langage

VMI et NDI norme $100 \pm 15 (> 85)$, bas (< 85), anormal (< 70)

Prédiction VMI normal si rSO2c ≥ 55%

Danger si < 45%

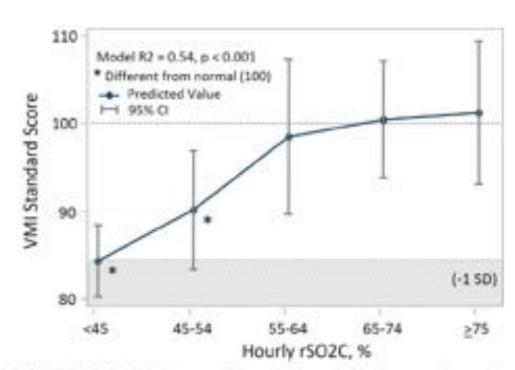


FIGURE 4. Multivariate model prediction of visual-motor integration (VMI) from hourly cerebral saturation (rSO₂C). Predicted VMI was significantly lower with rSO₂C less than 55%. Predicted VMI was normal (not different from 100) when hourly rSO₂C was maintained at greater than 55%. Predicted VMI was normal with rSO₂C greater than 45% and other standard risk conditions were applied. See text for details. CI, Confidence interval; SD, standard deviation.

Réanimation pré intervention

- Canal ouvert par PGE => shunt D-Gh
 - Perfusion coronaire +++
 - Surveillance SaO2 et NIRS
 - Equilibre des débits pulmonaire et systémique
 - Maintenir RVP élevées et RVS basse
 - Si besoin : inodilatateur- diurétique intubation
 - ventilation (risque de déséquilibre shunts)
 - Insuffisance rénale = DP avant intervention
- Préserver le capital veineux profond

Anesthésie

- Si intubé, transport au bloc avec FiO₂ stable
- Artère radiale droite Kt VCS SvO2
- Maintenir QP/QS le plus proche de 1
- SaO2 entre 75 et 85% et rSO2r > rSO2c
- Ventilation+++: PCO₂: 40 mmHg
- Température stable
 - hypothermie = RVP augmentent => déstabilisation Qp/Qs
- Maintenir l'équilibre jusqu'à la CEC

CEC

- CEC néonatale : faible priming sanguin,
 UF, T°, GDS, glycémie, Ca, Hb
- Arrêt circulatoire en hypothermie profonde
 - => augmente les RVP et RVS
- Perfusion cérébrale surveillée par la rSO2c
- Hypoxémie fréquente (sans perfusion cérébrale) :
 - lésions neurologiques post opératoires ± 70%
- Protection myocardique +++ clampage ± long
- Intérêt du levosimendan : inodilatateur

Intervention de Norwood

Au déclampage du shunt en CEC

- si faible variation de la PAM
 - RVP élevées ou shunt trop distal ou petite taille
 - Traitement : FiO₂ 100% et normocapnie ± NO
- si PAM baisse > 40 mmHg
 - RVP basses ou shunt trop proximal ou grande taille
 - Traitement : FiO₂ basse et normocapnie
- Sevrage lent de la CEC
 - Evaluation: PAM, SaO2, SvO2 (VCS), NIRS Echo

Réanimation per et post-op

- Objectif:
- optimiser l'apport systémique en O2 (DO2)
- Quels moyens?
 - VO₂ basse (AG)
 - RVS basses, RVP stabilisées
 - Fonction cardiaque normale (± inotrope)
 - Hémoglobinémie ≥15g
 - Interaction cœur-poumon minimale

Réanimation per et post-op

- Cibles thérapeutiques :
 - Sédation anesthésie
 - RVS: vasodilatateur –inodilatateur
 - Variation des RVP en post CEC : augmente le Qp/qs
 - Contractilité du myocarde : inodilatateur, adrénaline (béta)
 - Transfusion
 - Ventilation en PC: 6 ml/kg, PI basses
 - Sternum ouvert
- Résultats :
 - SvO₂ > 50%, PAm > 45 mmHg, RVS basses
 - $SaO_2 70-85\%, \Omega > 2,5$
 - $rSO_2c > 50, rSO_2r > 70$

SaO₂ insuffisante pour évaluer DO₂

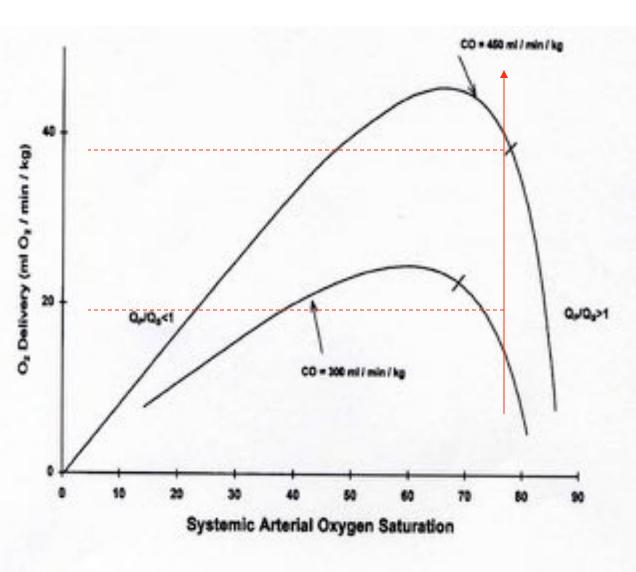
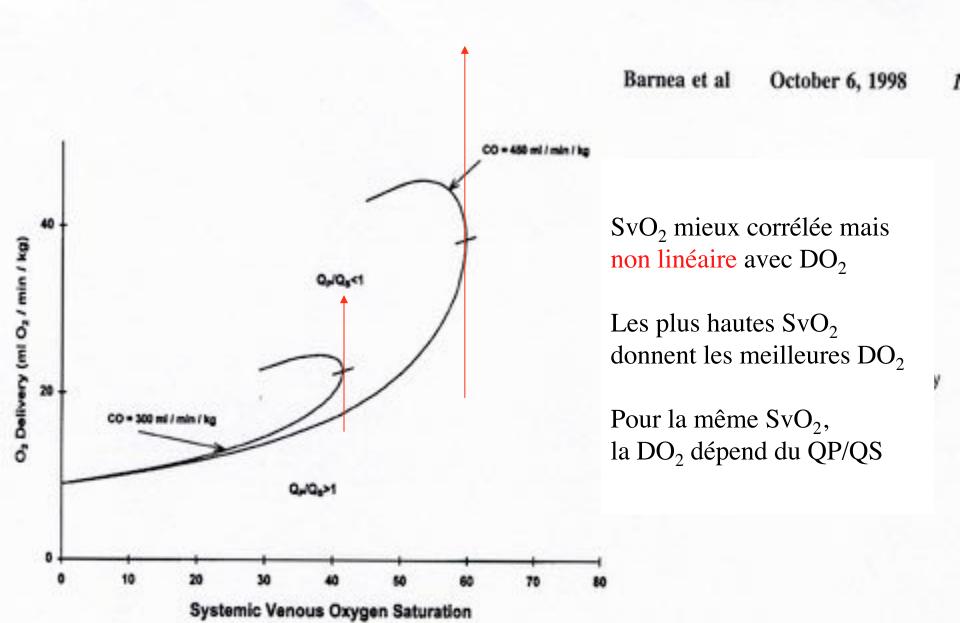
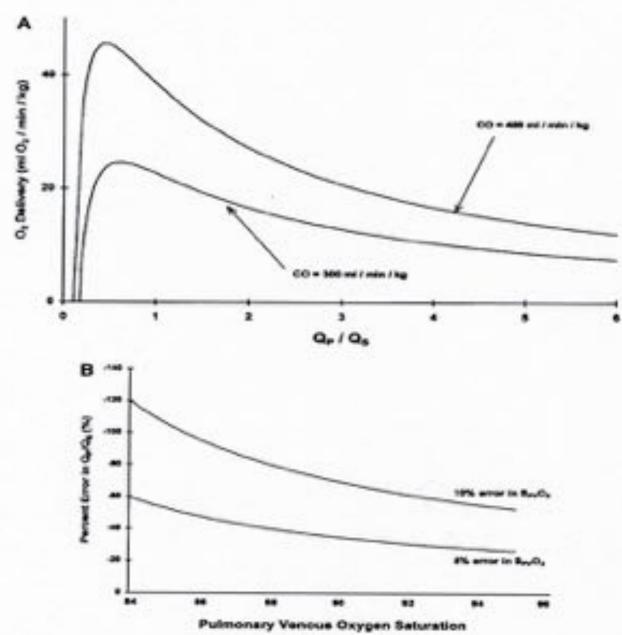




Figure 2. Systemic arterial oxygen saturation versus systemic oxygen (O₂) delivery. Two curves are presented. The curves were generated by setting the CO at 300 or 450 mL·min⁻¹·kg⁻¹ and varying Qp/Qs from 0.2 to 10. Most patients will have Qp/Qs>1. The short line on each curve represents the point at which Qp/Qs=1. Note that similar low and high oxygen delivery curves can be generated with many combinations of CO, Spvo₂, and CVo₂.

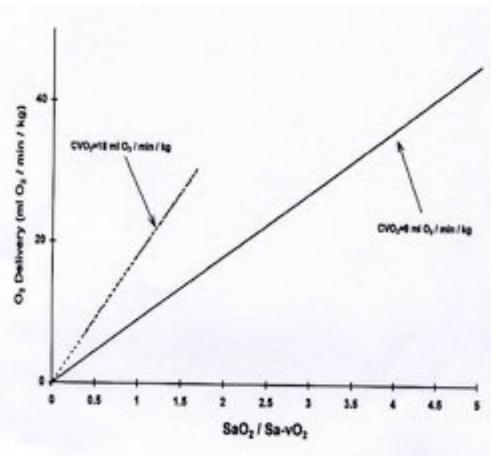
SvO₂ et DO₂

$QP/QS = SaO_2 - SvO_2 / SvpO_2 - SaO_2$

QP/QS dérivé des saturations, source d'erreur car SvpO₂ est estimée

Plus SvpO₂ est basse et plus l'erreur est importante

Index simplifiés


Reflet de la DO₂

(OEF)
$$\Omega = SaO_2/SaO_2-SvO_2$$

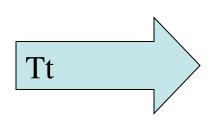
 DO_2 optimale si QP/QS ≤ 1

DO₂ basse si QP/QS >)

Reflet de l'extraction d' O_2 (OER) = SaO_2 - SvO_2 / SaO_2

QP/QS insuffisant et Ω < 2

Problème sur le shunt :


taille, position distale ou proximale

RVP hautes:

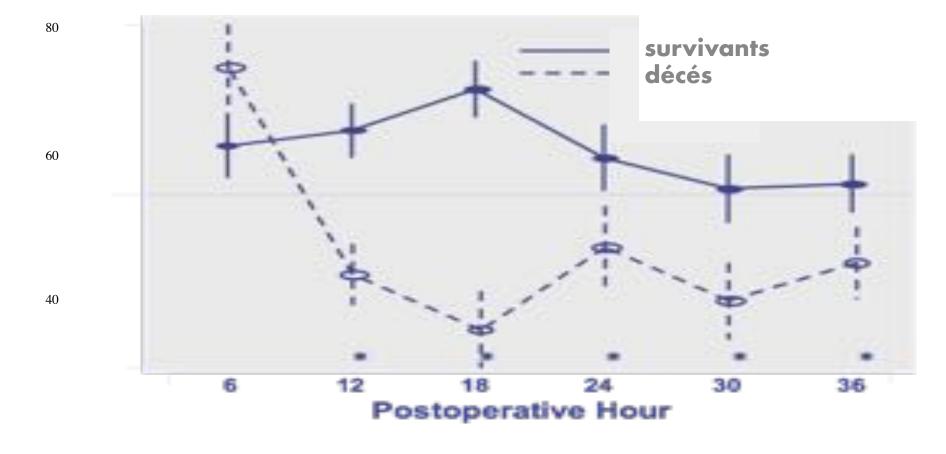
acidose, hypothermie, hypercapnie

Défaillance myocardique :

défaillance préopératoire, PM, ischémie coronaire, hypocalcémie

Réchauffement, Ca++ Normocapnie et FiO2 100% Sédation + curare Remplissage, Inotrope et iNO ECMO

QP/QS > 2 – shunt large


- SvO₂ et rSO₂r > 60% avec Ω > 2,5
 - Echo: flux télédiastolique aortique > 0,2
 - Objectif: augmentation des RVP
 - Tt: Hb ± ventilation
- SvO₂ et rSO₂ r < 50% avec Ω < 2
 - Objectif : baisse des RVS et augmentation des RVP
 - Tt : vasodilatateur + Hb ± ventilation

Ann Thorac Surg. 2009 Feb;87(2):571-7; discussion 577-9. doi: 10.1016/j.athoracsur.2008.10.043.

Near-infrared spectroscopy in neonates before palliation of hypoplastic left heart syndrome.

Johnson BA1, Hoffman GM, Tweddell JS, Cava JR, Basir M, Mitchell ME, Scanlon MC, Mussatto KA, Ghanayem NS.

- NN avec hypoplasie du ventricule gauche
- **rSO2 somatique** abaissée plus de 6 heures est prédictive de dysfonctions d'organes et de décés

Tube VD-AP

- Flux systolique fuite pulmonaire
- Taille adaptée (risque d'hyper débit)
- Moins de risques d'ischémie qu'ASP
- Ajoute une ventriculotomie :
 - Dysfonction ventriculaire
 - Trouble du rythme
 - Sténose branches pulmonaires secondaires
 - SaO₂ plus basse

Norwood / Hybride

	Norwood	Hybride
CEC moy	200 min	0
ACHP ± PCS	15 min	0
ECMO moy	11 à 16%	0 (1)
Sternum ouvert	4 à 6 jours	0
Intubation moy	6 à 8 jours	65% < 24h
Hôpital moy	32 à 38 jours	18 jours

Per opératoire

- 46% KT artériel ombilical
- 100% NIRS
- 25% déjà intubés
- 27,3% transfusés
- 51% remplis à l'albumine
- 13% Inotropes
- Instabilité majeure pendant le cerclage APG
 - Troubles du rythme, hypoPA et bradycardie
- Intérêt de la NIRS pdt placement du stent

Pediatric Anesthesia

Pullatry Asystems 2027 30:36:46

doi:10.1111/j.1440-990.3009.0309.

Anesthetic management of the hybrid stage 1 procedure for hypoplastic left heart syndrome (HLHS)

> AYMEN N. NAGUIB NO", PETER WINCH NO", LAWRINGE SCHWARTZ NO", JANET BAACS CRIAT, ROBERTÁ BODEMAN NI, JOHN P. CHEATHAM NIỆ AND MARK GALANTOWICZ NO!

"Opportuned of Assoliania The Stort Center, Michaelia Children's Stopriot, Colombia, (INI, LISA, "Elegantary of Associations, Asimonopia Children's Haspini, Colombias, (INI, 1954) and §The Mari Circles, Matematic Children's Reported, Colombia, (INI, USA) and §The Mari Circles, Matematic Children's Reported, Colombia, (INI, USA).

Réa technique hybride

- PAP/PA 50%, SaO₂ 80±5%
- Gradient cerclages ≤ 4m/sec
- Risque de défaillance du VU par : Equilibration QP/QS avec risque d'hyperdébit pulmonaire
- Obstruction rétrograde de l' Aao
 - ischémie myocardique
- Risque de mort subite

HypoVG: facteurs de risque

- Age >14j et prématurité
- Pds < 2500, Taille de l'aorte
- Anomalies cardiaques associées
 - CIA restrictive et CAV déséquilibré
- Fonction VU et fuite tricuspide
- Anomalies non cardiaques associées
- Durée CEC et ACHP
- Absence de SvO2
- Absence de baisse de la post charge

Au final

- Réanimation très complexe et continue
 - Qp/Qs + dysfonction ventriculaire
 - Norwood > Hybride > Sano
- Expertise si prise en charge fréquente
- Peu d'interventions (< 10 pts/an)
- Monitoring multiples et répétés
 - SaO2, SvO2, NIRS, écho