Stratégies pré et per procédure des cardiopathies congénitales

Philippe Mauriat
Novembre 2018

Contexte des cardio congénitales

- NN avec diagnostic antenatal à adulte multi-opéré
- Problèmes communs :
 - Troubles du rythme (congénitaux adultes)
 - Forte interaction cœur-poumon : troubles de ventilation, surinfection...
 - Dysfonction ventriculaire
 - HTAP conséquence de shunt G-D, ou d'atteinte mitrale ou mixte
 - Effets multisystémiques de la cyanose : troubles de l'hémostase, ...
- Association de syndrome polymalformatif (8 à 10%) :
 - Génétique : microdélétion 22q11(Digeorge), Noonan, Marfan, Williams Beuren, Trisomie 21, Turner...
 - Autres : alcool, toxique, infectieux, métabolique, environnemental...

Troubles du rythme

- Fréquents : auriculaires ++ ou ventriculaires
- Spontanés ou provoqués
- Induction anesthésie : période à risques
 - Déséquilibre des shunts
 - Dilatation des cavités droites
 - Variation du pH
 - Hypoxie hypo hypercapnie
 - Troubles ioniques (± liés aux diurétiques pré-op)

Interactions cardio-pulmonaires

- Compression des voies respiratoires par structures vasculaires :
 - Atélectasie chronique, surinfection, pneumopathie, emphysème localisé
- Scoliose Déformation thoracique, sternale
- Hémoptysies (artères collatérales HTAP Syndrome Eisenmenger)
- Lésion du nerf phrénique ou récurrent (complications chirurgicales)
- Conséquences :
 - Surinfections pre et post-opératoires
 - Difficultés de sevrage du ventilateur

Défaillance cardiaque congestive

- Favorisée par
 - Shunts avec augmentation du débit pulmonaire
 - CIA CIV large TAC TGV
 - Lésions obstructives de la voie gauche
 - Coarctation sténose valvulaire (supra et sous aortique)
 - Anomalies valves (insuffisance): Ao Mitrale
 - Cardiomyopathie
 - Réintervention : CIV résiduelle, fuite valvulaire...
 - ex : Fallot opéré avec fuite valve pulmonaire à l'âge adulte

Dysfonction ventriculaire

- Liée à la pathologie :
 - Ventricule droit systémique ou ventricule unique
- Liée à l'âge de la correction
- Surcharge en pression sur sténose valvulaire
- Surcharge en volume sur shunt, insuffisance valvulaire
- Cyanose : VO2 > DO2
- Coronaropathie
- Conséquence : dysfonction cardiaque ± aggravée en post-op

Hypertension artérielle pulmonaire

- Shunt G ⇒ D : surcharge du VD en volume (CIA) et en pression (CIV, TAC)
 - Dysfonction endothéliale = pathologie vasculaire pulmonaire
 - HTP progressive puis irréversible
- Large shunt non restrictif
 - CIV
 - CAV
 - TGV avec CIV
 - CA
- Risques de crises d'HTAP post-op et dysfonction VD

Cyanose

- Cardiopathies cyanogènes
 - Atrésie pulmonaire
 - TGV
 - Tétralogie de Fallot
 - Syndrome d'Ebstein
- Après intervention palliative
 - Création de shunt systémico-pulmonaire
 - Anastomose systémico-pulmonaire (ASP)
 - = anastomose de Blalock-Taussig
 - Création de CIA
 - Dérivation cavo-pulmonaire partielle

Effets de la cyanose

- Hématologiques
 - Érythropoièse augmente, Ht↑ (favorise lithiase biliaire)
 - Hyperviscosité symptomatique si Ht> 65%
 - Céphalées, étourdissements, trouble de la vision, fatigue, myalgies, faiblesse musculaire
 - Déficience en Fer
 - Plaquettes ↓, von Willebrand ↓, survie plaquettaire ↓
 - Thromboses (lobes supérieurs pulmonaires)
- Risques hémorragiques post-opératoires
- Eviter les variations importantes du niveau d'hématocrite de base

Effets de la cyanose

- Effets de l'hypoxémie sur le rein
 - Glomérules hypercellulaires et dilatés
 - Épaississement membrane basale
- Effets de l'hypoperfusion chronique
 - Augmentation de la réabsorption
 - Protéinurie
 - Hyperuricémie
- Risque élevé d'IRA post-opératoire

Effets de la cyanose

- Effets neurologiques de l'hypoxie chronique
 - La rSO2 (NIRS) cérébrale est souvent < 50%
 - Abcès cérébraux
 - Accidents vasculaires cérébraux
 - Embolies paradoxales
- Hypoperfusion cérébrale par vol sous-clavier d'une anastomose systémico-pulmonaire

Questions essentielles

- Quelle cardiopathie ?
- Des shunts cardiaques ?
 - avec risque de variation du débit pulmonaire ?
- Des lésions obstructives ?
- Une cyanose ?
- Une défaillance cardiaque ?
- L'atteinte d'autres organes ?
- Des malformations associées ?

Shunt dépendant

- Shunt large entre 2 cavités avec égalité de pression :
 - Large CIA CIV Canal artériel
 - Tronc artériel commun (TAC) Fenêtres aorto pulmonaire
 - Anastomose Systémico-Pulmonaire (Blalock)
- Le shunt est dépend du contrôle des résistances vasculaires systémiques (RVS) et pulmonaires (RVP)
- Différent des shunts peu dépendants des RVS et RVP :
 - shunt obligatoire ou shunt restrictif

Shunt obligatoire

- Shunt large entre 2 cavités
 - avec grande différence de pression
- Shunt fixé, à haut débit
- Peu dépendant des RVS et RVP
- Ex: Canal atrio-ventriculaire (CIA CIV)
 - Shunt VG -> OD

Shunt restrictif

Petit shunt entre 2 cavités

Fixé, petit débit

Peu dépendant des RVS et RVP

Ex: Petites CIA - CIV

Canal artériel de très petite taille

Anastomose systémico-pulmonaire (Blalock) de petit calibre par rapport à la taille des branches pulmonaires

Shunt dépendant et anesthésie

- Les shunts sont dépendants de la dynamique circulatoire (shunt G-D)
- Le but médical est de préserver cette dynamique pour contrôler le shunt
- Surtout : éviter l'hyperdébit pulmonaire à l'induction de l'AG provoqué par préoxygénation 100%, puis l'hyperventilation
- Cibles du contrôle du shunt :
 - Fonction ventriculaire
 - Résistances vasculaires systémiques (RVS)
 - Résistances vasculaires pulmonaires (RVP)

Augmentation du débit

- Remplissage vasculaire
- Agents chronotropes (pas toujours...)
- Agents inotropes (pas toujours...)
- Vasodilatateurs (si volémie correcte)
- Anesthésiques
 - · si obstacle musculaire à l'éjection par baisse des effets symp +
 - Ex : midazolam pour une tétralogie de Fallot
- ß bloquants (diminue l'hypertonicité de l'infundibulum pulm du VD)

Diminution du débit

- Anesthésiques (le + souvent) : propofol, halogénés, midazolam
- Hypovolémie
- Vasodilatateurs (si volémie insuffisante)
- Troubles du rythme
- Ischémie
- Inhibiteurs calciques surtout chez l'enfant
- Pression moyenne de ventilation élevée
 - Baisse de la précharge, aggravée si volémie insuffisante

Variations des RVS

- Augmentation
 - Stimulations sympathiques (douleur, réveil,...)
 - Vasopresseurs systémiques
- Diminution
 - Anesthésiques (propofol)
 - Vasodilatateurs (phentolamine, urapidil)
 - ß bloquants
 - Inhibiteurs calciques

Augmentation des RVP

- Hypoxie (PaO2 < 6 kpa)
- Hypercapnie
- Acidose
- Hématocrite élevé
- Hypervolémie
- Pression moyenne de ventilation élevée
- PEEP élevée
- Stimulation sympathique

Diminution des RVP

- O2 : pb de la pré-oxygénation systématique si shunt G-D
- Hypocapnie : pb de l'hyperventilation
- Alcalose
- Hématocrite bas
- VD pulmonaire spécifique : NO, prostacycline en aérosol, ...
- VD pulmonaire : prostacycline, sildénafil, bosentan
- Anesthésiques

Variation du shunt Qp/Qs

Qp : débit pulmonaire = VO2/(CvpO2-CapO2)

Qs: débit systémique = VO2/(CaoO2-CvO2)

Shunt: Qp/Qs = Ao-VC/VP-AP = (CaoO2-CvO2)/(CvpO2-CapO2)

CaoO2 ≠ CvpO2 ≠ SaO2

Qp/Qs = (SaO2-SvO2)/(SaO2-SvpO2)

Hyperdébit pulmonaire Qp/Qs >> 1

Hypodébit pulmonaire Qp/Qs << 1

Hyperdébit pulmonaire

Shunt Gauche-Droit: QP > QS

Augmentation du flux pulmonaire

Si QP >> QS

Risque de surcharge vasculaire pulmonaire

Hypoperfusion systémique secondaire

Hypoperfusion coronaire

Aggravé par FiO2 100% + hyperventilation avec hypocapnie

Malformations à shunt G-D

- CIA
- CIV
- Canal artériel
- CAV partiel et CAV complet
- RVPA
- TAC
- Ventricule unique

Hypodébit pulmonaire

Shunt droit-gauche QP < QS

=> hypoxie avec cyanose

Si QP << QS

Diminution du flux pulmonaire avec hypoperfusion

Diminution du retour veineux pulmonaire

Diminution de la précharge gauche

Bas débit cardiaque et hypoxie ++++

Aggravation de la désaturation

Malformations à shunt D-G

Tétralogie de Fallot

Atrésie pulmonaire avec ou sans CIV:

AP Septum Ouvert ou AP Septum Intact

Atrésie tricuspide

Anomalie d'Ebstein

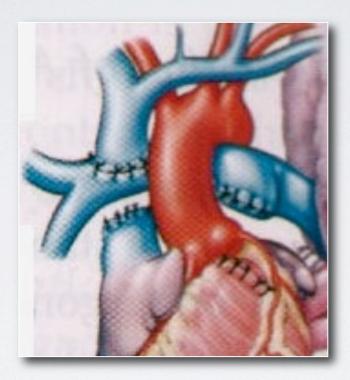
TGV (CA - CIV) avec shunt mixé

Ventricule unique ± sténose pulmonaire

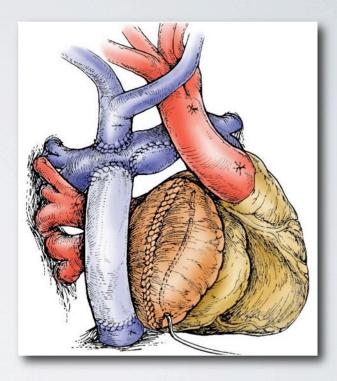

Lésions obstructives

- Coarctation de l'aorte
- Sténose aortique
- Sténose mitrale
- Sténose pulmonaire
- Hypertrophie septale VG ou VD
- Prudence avec le remplissage : risque de surcharge pulmonaire
- Prudence avec les inotropes : majoration des gradients

Le bilan pré-procédure permet de connaitre


- La pathologie cardiaque du patient
- Le but de l'intervention
 - Cathétérisme ou chirurgie : initiale ou reprise
- Les risques de décompensation
 - A l'induction d'anesthésie ou sédation légère (augmentation des résistances)
 - Pendant l'intervention avec ou sans CEC
- La stratégie pour le péri-opératoire
 - Objectifs hémodynamique et oxygénation
- La stratégie pour le post-opératoire

Prise en charge par étapes Exemple du ventricule unique ± sténose pulmonaire


Nouveau-né

Anastomose systémico-pulmonaire ou cerclage AP

> 6 mois

Dérivation cavo pulmonaire partielle

> 3 - 4 ans et bcp +

Dérivation cavo pulmonaire totale

Objectifs hémodynamiques

	Précharge	RVP	RVS	FC	Contractilité
CIA shunt G-D	Aug	Aug	Dim	Ν	Ν
CIV shunt D-G	Ν	Dim	Aug	Ν	Ν
CIV shunt G-D	Aug	Aug	Dim	Ν	Ν
Sténose sous aort avec hypertrophie	Aug	N	N Aug	Dim*	Dim*
Canal artériel	Aug	Aug	Dim	Ν	Ν
Coarctation	Aug	Ν	Dim	Ν	Ν

Moore RA. Perioperative care of the child with congenital cardiac disease. In: Pediatric cardiac anesthesia. Appleton&Lange, Norwalk 1993

Objectifs hémodynamiques

	Précharge	RVP	RVS	FC	Contractilité
Sténose valve pulmonaire	Aug	Dim	Ν	Dim	Aug
Sténose infundibulum pul	Aug	Dim	Ν	Dim	Dim*
Sténose aortique	Aug	Ν	Aug*	Dim*	N Aug
Sténose mitrale	Aug	N Dim	Ν	Dim*	N Aug
Fuite aortique	Aug	Ν	Dim	N Aug	N Aug
Fuite mitrale	Aug	N Dim	Dim	N Aug	N Aug

Moore RA. Perioperative care of the child with congenital cardiac disease. In: Pediatric cardiac anesthesia. Appleton&Lange, Norwalk 1993

Effet du shunt sur l'induction d'anesthésie

Shunt D-G:

- Ralentit l'induction des halogénés
- Accélère l'induction IV
- Shunt G-D:
 - Pas d'effet sur l'induction des halogénés
 - Ralentit ± l'induction IV

Group	Induction time (s) (mean±SD)
1 témoin	51±11.3
2 Shunt G-D	53±12.0
3 Shunt D-G	99±12.3*

Comparison of speed of inhalational induction in children with and without congenital heart disease

Hasija S. Annals of Cardiac Anaesthesia | Jul-Sep-2016

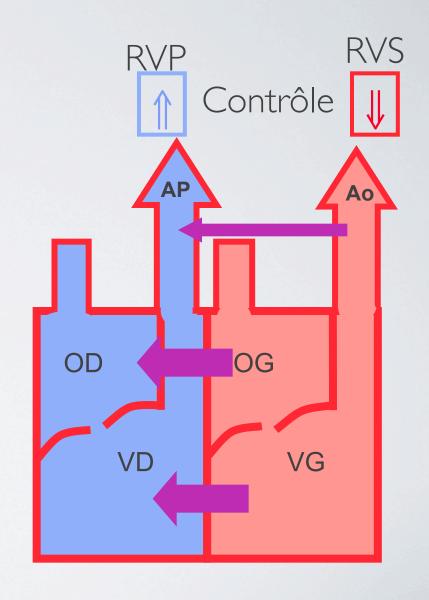
Variations Qp/Qs à l'induction d'anesthésie

- Intubation : risque de complications si baisse de SaO2 >30%
- Intubation sélective Sonde coudé => RVP ++
- Troubles du rythme par augmentation des volumes droits

Bradycardie - Rythme jonctionnel - ESV

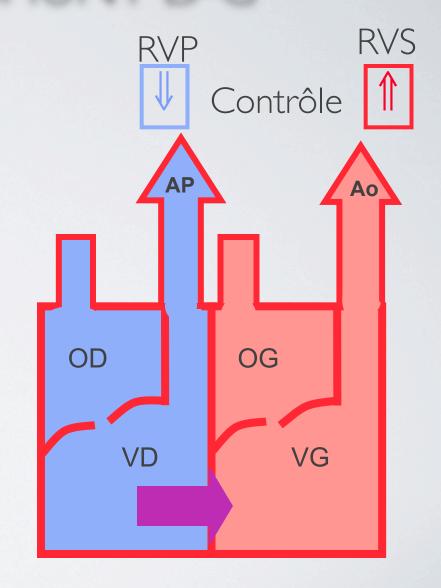
Anesthésie insuffisante - Hypoxémie - Hypercapnie - Troubles ioniques

Mise en place du guide du cathéter central

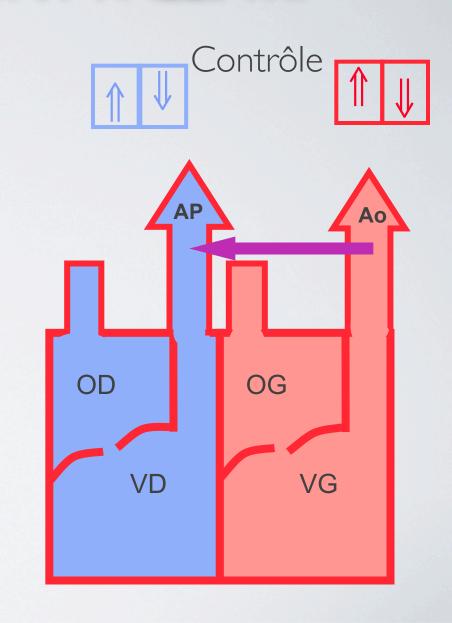

=> Baisse du Qc - désaturation - acidose - RVP ++

Effets de la ventilation à l'induction d'anesthésie

- Hyperventilation avec hypocapnie
 - Diminue la PAP et augmente le shunt G-D
 - ex : CIV sans sténose pul, CA, ASP
 - Augmente la concentration alvéolaire des halogénés
 - Accélère l'induction
 - Pré-oxygénation et ventilation à FiO2 100%
 - Conséquences :
 - Diminue le débit sanguin cérébral (chute de la rSO2 cérébrale)
 - Diminue les RVP et augmente le shunt G-D : hyperdébit pulmonaire


ANESTHÉSIE ET SHUNT G-D

- · CIA, CIV, CA
- Risque de surcharge vasculaire pulmonaire avec hypoperfusion systémique secondaire (coronaire++)
- Contrôle du shunt : ↓RVS et ↑ RVP
- Attention FiO2 100% et hyperventilation
- · Anesthésie:
 - Induction IV ou halogénés : faible effet sur les RVP


ANESTHÉSIE ET SHUNT D-G

- Tétralogie de Fallot
- Atrésie pulmonaire (+CIV), Ebstein
- - shunt ↑, cyanose ↑
- Contrôle du shunt : ↑ RVS et ↓ RVP
- Anesthésie :
 - Induction iv : accélération des effets
 - Halogénés : induction prolongées (risque de surdosage)

ANESTHÉSIE ET SHUNT PALLIATIF

- Shunt $G \Rightarrow D$ chirurgical
 - Anastomose systémico-pulmonaire (Blalock)
 - SaO2 cible entre 80 et 85%
- Contrôle du shunt :
 - maintenir l'équilibre...
 - FiO2 élevée, PCO2 basse, Hte bas=> baisse RVP
 - Hypoventilation (intubation sélective, sécrétions...) => augmente RVP

Au final

- Comprendre la physiopathologie des CC
 - Avant l'intervention et pendant
 - Comprendre le management du Qp/Qs
- Intérêt des protocoles pour l'anesthésie, la CEC, la protection myocardique
 - Permet l'évaluation stricte de la réparation de la CC sans interférences de différentes stratégies d'anesthésie
- L'anesthésie des CC = réanimation per-opératoire