
Anesthésie et réanimation des APSI

Mirela Bojan / Ph Mauriat

APSI: prises en charge possibles

APSI: réanimation préopératoire

Urgence néonatale

Ductodépendance pour la circulation pulmonaire (aucune collatéralité)

Soit procédure Kt, soit chirurgie

-Préserver les abords artério-veineux : multiples interventions chir et kt

APSI: induction de l'anesthésie

Favoriser le débit pulmonaire par CA :

- -Légère hypocapnie
- -Corriger toute acidose
- -Pressions de ventilation basses
- -Hb 13-15g/dl
- -Ne pas trop vasodilater la périphérie
- -Inotropisme parfois nécessaire
- ± NO inhalé si désaturation malgré FiO2 100%

APSI: procédure perforation-dilatation

AG: intubation + VA

Procédure ± longue

Maintenir la PG, arrêt progressif en qq h ou jours

Monitoring PA, PVC

SaO2 en sous-ductal, rSO2c et rSO2r (NIRS)

Monitoring Gaz du sang

Risque arythmogène avec les manœuvres de KT

Réveil et extubation décalés, dépend de la fonction VD, du débit pulmonaire et des saturations

APSI : procédure chirurgicale ASP / Commissurotomie + patch trans-annulaire (ouverture VD-AP)

ASP sans CEC si possible (dépend de la SpO2 au clampage de l'AP)

Commissurotomie + Ouverture VD-AP sous CEC d'assistance

Hémostase chir et biologique rigoureuse pour maintenir un Ht stable

Fin de la chirurgie = diminution de la pression VD + augmentation Qp

FiO2 selon SpO2

Qp très variable avec la FiO2, volémie, inotropes si ASP

Beaucoup plus stable si ouverture VD-AP

Surveiller ECG si ouverture VD-AP

Effet de l'hématocrite sur les RVP

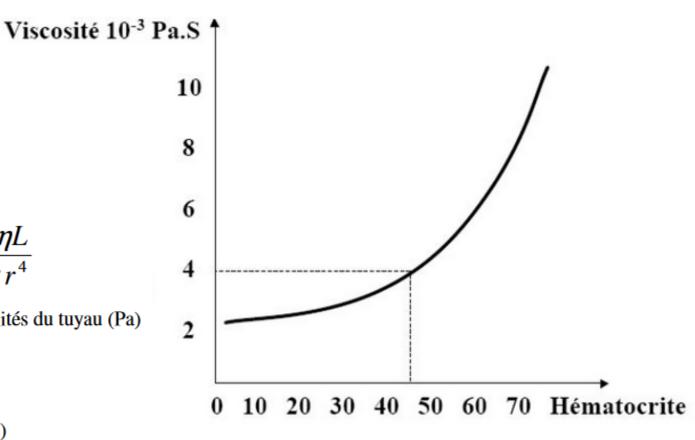
Jean-Louis-Marie Poiseuille (1797-1869)

οù

 $\Delta P = R D$

et

 $R = \frac{8\eta L}{\pi r^4}$

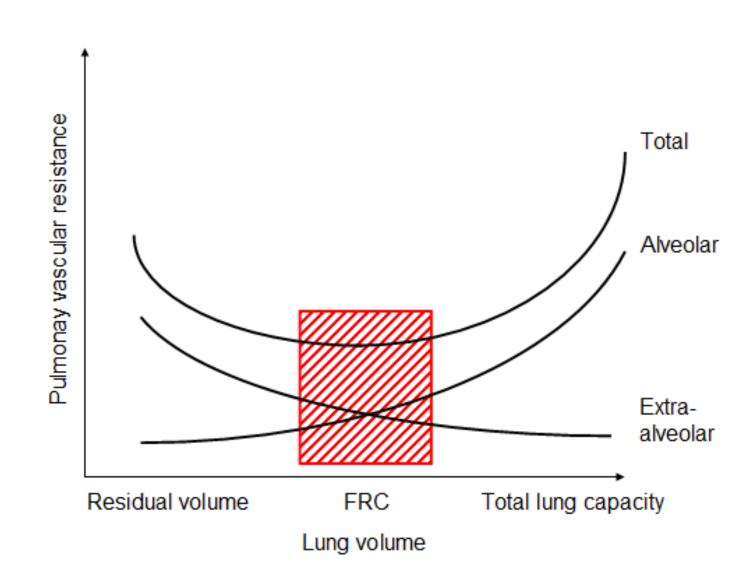

 ΔP : Variation de la pression aux extrémités du tuyau (Pa)

 η : Viscosité du liquide (Ns/m²)


L: La longueur du tuyau (m)

r : Rayon du tuyau (m)

D: Débit du liquide à l'équilibre (m³/s)



Effet du pH et de la FiO2 sur les RVP

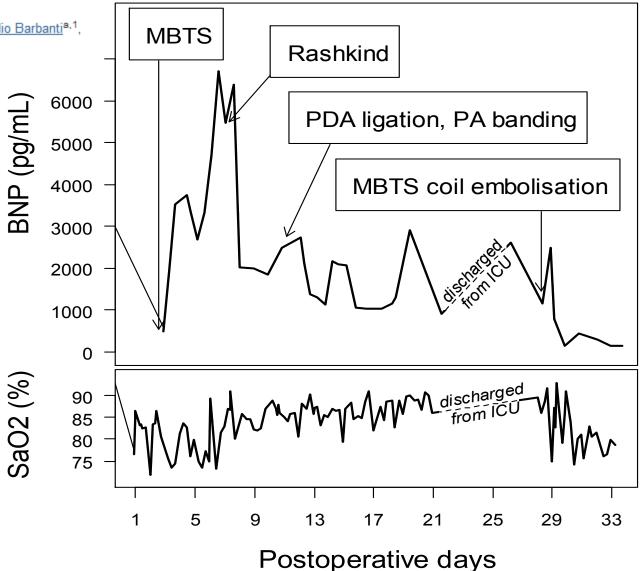
Rudolph, J Clin Invest 1966

Effet de la ventilation mécanique sur les RVP

ASP inefficace – signes précoces et installation rapide

- -↓SpO2 et NIRS basse
- -Disparition du souffle et du signal Doppler
- → bolus d'héparine (1mg/kg), précharger le VG, augmenter la pression systémique (inotrope), FiO2 100% et NOi
- → si réa inefficace => reprise chirurgicale

Hyperdébit à travers l'ASP – signes insidieux +++


- -SpO2 > 95% en air ambiant, NIRS systémique et cérébrales basses
- signes de surcharge pulmonaire -> OAP
- baisse de PA, oligo-anurie, hyperK, acidose
- → transfusion, hypercapnie,
- chirurgie : diminution du calibre de l'ASP par clip ou tube inférieur

Postoperative B-type natriuretic peptide monitoring for the assessment of the magnitude of shunting through Blalock-Taussig anastomoses

<u>Cristian Mirabile</u>^{a,1}, <u>Alessandra Mazzola</u>^{b,1}, <u>Liana Valeanu</u>^{c,1}, <u>Vanessa Lopez-Lopez</u>^{a,1}, <u>Claudio Barbanti</u>^{a,1}, <u>Camilla Biselli</u>^{a,1}, <u>Carole Hennequin</u>^{d,1}, <u>Sophie Malekzadeh-Milani</u>^{e,1}, <u>Mirela Bojan</u>^{a,*}, □ 1. □

IJC 2017

33 jours atrésie tricuspide + sténose sous-pulmonaire

SaO ₂	Pulmonary- to-systemic flow ratio		BNP cutoff (pg mL ⁻¹)		Specificity	Positive predictive value	Negative predictive value
> 75%	> 1.2	110	535.45	0.71	0.67	0.95	0.20
> 80%	> 1.5	78	558.60	0.70	0.45	0.65	0.38
> 85%	> 2	27	1051.90	0.52	0.75	0.37	0.84

Anastomose Systémico-Pulmonaire

Avantages

- Peut permettre d'éviter une CEC
- Peut permettre d'éviter le patch trans-annulaire

Inconvénients

- apporte au poumon du sang oxygéné
- le flux dans l' AP est continu
- si vol diastolique important → risque d' ischémie myocardique
- déforme les branches pulmonaires
- les APs grandissent moins bien
- antiaggrégation nécessaire
- équilibre délicat du Qp/Qs en post-op

L'ouverture VD-AP

Avantages

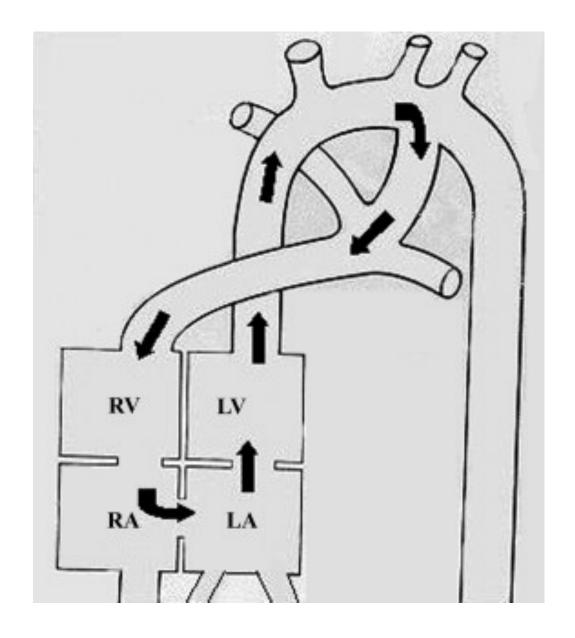
Bradley, ATS 2008

- apporte au poumon du sang désaturé
- le flux dans l' AP est pulsé → favorise la croissance des AP
- moins de vol diastolique → moins de risque d'ischémie myocardique
- conduit VD-AP calibre 5-6 mm vs ASP 3,5-4 mm
- ne déforme pas les branches pulmonaires
- inclut les flux veineux hépatique dans le retour veineux → moins de risque de fistules a-v pulmonaires

Inconvénients

- nécessite une CEC
- patch trans-annulaire
- ventriculotomie
- impossible si coronaire croise l'infundibulum ou fistules coronaires

Fistules coronaro-VD


17% (Daubeney, JACC 2002) Une partie de la perfusion du VG est VD-dépendante (sang désaturé)

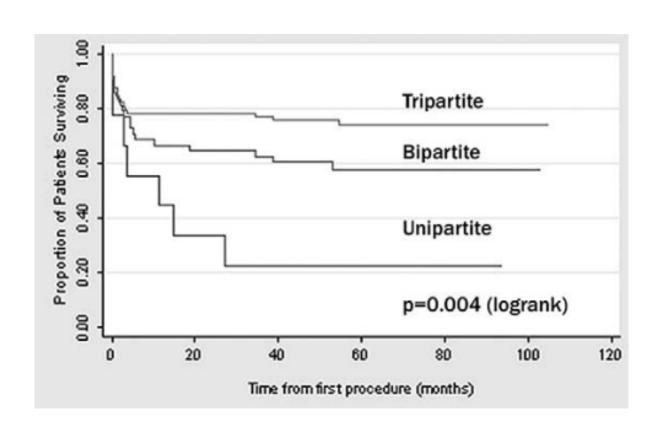
Interdisent la décompression du VD par ouverture VD-AP

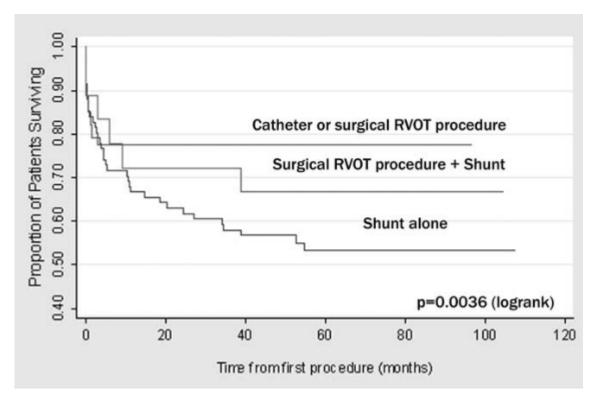
Si découverte perop après ouverture : risque infarctus

- → augmenter la pression de perfusion coronaire par
 - ↑ RVS (α agonistes)
 - ↑ RVP (PEEP)
 - ↑ précharge

→ ECMO AV inefficace => décharge complète du VD L'important c'est une pression augmentée dans le VD : fermer la voie VD-AP et faire ASP

Shunt circulaire si fuite tricuspide massive


Très difficile à traiter


- ↓ RVP (NOi)
- ↓ RVS
- Réduire l'ASP
- ou ASP en distalité

Pulmonary atresia with intact ventricular septum: Predictors of early and medium-term outcome in a population-based study

Daubeney JTCVS 2005

N = 183

