

Anesthésie-Réanimation Tétralogie de Fallot

Dr Pierre LAVEDAN

Service de Réanimation des Cardiopathies Congénitales

CHU de Bordeaux

INDUCTION ANESTHESIQUE

Fallot: Prévention du Malaise

Ne pas aggraver le shunt Dt-G

- Préserver le débit pulmonaire
- Eviter la diminution des RVS

Anesthésie

- Prémédication par Hypnovel / EMLA
- Jeun le plus « court possible »
- Limiter l'agression :
 - o Douleur / Bruit

Induction

- Halogénés / Opiacés
- FiO2: 100%
- Remplissage

- Tachycardie
- Désaturation : SpO2 / NIRS
- Baisse de la PA
- Disparition du souffle

Fallot: Traitement du Malaise

Diminution des RVP

• FiO2: 100%

Hyperventilation

Traitement médicamenteux

- Remplissage VD → Surélever les membres inférieurs
- Remplissage: 10 à 20 mL.kg⁻¹
- ßbloquants :
 - o Propanolol: 0,05 à 0,1 mg.kg⁻¹
 - O Esmolol: 50 μg.kg⁻¹

Augmentation des RVS

- Compression de l'aorte abdominale
- Vasopresseur :
 - Néosynephrine
 - Noradrénaline

- Baisse de la FC
- Augmentation SpO2
- Réapparition du souffle

PER OPERATOIRE

Avant le départ en CEC

- → EtCO2 non fiable du fait de l'hypodébit pulmonaire
- → Situations à risques de malaise :
 - Sternotomie
 - Manipulation et compression de l'OD

Contrôle gazométrique pour évaluation PCO2 Remplissage disponible rapidement (CGR/PFC)

Protection myocardique

Eviter l'hyperoxie +++

- Augmente la production de radicaux libres chez les cyanosés entrainant lésions de réoxygénation en début de CEC et au déclampage :
 - Contrôle particulièrement en début de CEC : (PaO2 < 15 kPa)
 - Baisser FiO2 au déclampage aortique
- Maintenir la normoxie

Cardioplégie sanguine en normothermie

- Technique exigeante :
 - ➤ Intervalles de réinjection : 12 à 15 min
 - ➤ Monitorage de la pression d'injection
- Meilleur protection :
 - > Fonction ventriculaire
 - ➤ Besoin d'inotropes plus faibles
 - ➤ Niveau de troponine plus bas

Sevrage de la CEC

Monitorage

- POG nécessaire
- Mesure PVD/PA sans inotropes
 - **→** 55 +/- 12%
- Mesure des saturations étagées
 OD VD AP
- ETO per opératoire :
 - > Fonction biventriculaire
 - Obstacle infundibulaire
 - > CIV résiduelle

Inotropes

- Anneau conservé ou valve réparée :
 - ➤ Peu ou pas d'inotropes
 - > Corotrope 0,5 μg.kg⁻¹.min⁻¹
- Ouverture de l'anneau +/- Monocusp :
 - Risque de régurgitation
 - Aggravé si AP petites
 - > Traitement inotropes :
 - O Adrénaline 0,05 μg.kg⁻¹.min⁻¹
 - Corotrope 0,5 μg.kg⁻¹.min⁻¹
 - > +/- VD pulmonaires

<u>Hémostase</u>

- Saignement +++
- Limiter l'hémodilution per CEC
 - Priming au sang ++
- Hémostase par :
 - > CPA
 - > Fibrinogène
 - > Kanokad
 - Protamine

COMPLICATIONS POST OPERATOIRES

Dysfonction VD

Favorisée par :

- Ventriculotomie
- CIV résiduelle
- Défaut de protection (hypertrophie + cyanose)
- Régurgitation de la valve pulmonaire
- Persistance obstacle infundibulaire

- RVP élevées (âge < 2 mois)
- Patch trans annulaire trop grand
- Résection infundibulaire trop importante
- Lésion coronaire infundibulaire
- Taille des AP limites

Support inotrope systématique : Corotrope +/- Adrénaline

VD restrictif

<u>Causes</u>

- Hypertrophie du VD avec fibrose endomyocardique
- Aggravé par mauvaise protection

Conséquences

- Régurgitation diastolique de la valve pulmonaire en même temps que la systole auriculaire
- Flux rétrograde dans la VCS

Prise en charge

- Fuite VD-AP augmentée pendant la phase inspiratoire
 - → Diminution du temps inspiratoire
- Risque de bas débit cardiaque :
 - → Inotrope + Remplissage +/- NO
 - → Reprise chirurgicale pour valver AP
- Forte incidence d'épanchements pleuraux et ascite
 - → Maintien des drains pleuraux en place

Adaptation en 10 – 15 jours

PARTICULARITES DU FALLOT VIEILLI

Cyanose: Effet multisystémiques

Viscosité **Shear Stress** Production prostaglandines et NO endothélial Vasodilatation

Current Cardiology Reviews, 2012, 8, 1-5

Cyanotic Congenital Heart Disease The Coronary Arterial Circulation

Joseph K. Perloff

Pression préservée grâce à viscosité - Eviter hémodilution

Cyanose : Effet multisystémique

<u>Hématologique</u>

- Erythropoièse et Ht augmentés
- Hyperviscosité symptomatique si Ht > 65%
- Déficience en fer
- Diminution Plaquettes, FvW, survie plaquettaire
- Thromboses

Rénal

- Glomérules hypercellulaires et dilatés
- Epaississement membrane basale
- Hypoperfusion → Réabsorption accrue
- Protéinurie
- Hyperuricémie

Neurologique

- Abcès cérébraux
- AVC
- Embolies paradoxales
- Vol sous-clavier par BTS

Troubles hémorragiques post opératoires

Risque d'IR post opératoire

Peut contre-Indiquer la CEC

Lésions de réoxygénation

Cardiopulmonary bypass—induced myocardial reoxygenation injury in pediatric patients with cyanosis

- P. Modi, FRCS, H. Imura, MD, M. Caputo, MD, A. Pawade, FRCS, A. Parry, FRCS,
- G. D. Angelini, FRCS, and M. S. Suleiman, PhD, Bristol, United Kingdom

Figure 1. Geometric means (bar heights), 95% confidence intervals (error bars), and fitted values (crosshairs) of serum troponin I (TnI) in pediatric patients with and without cyanosis measured at different periods of CPB.

ADVANCES IN MYOCARDIAL PRESERVATION, CARDIOPULMONARY BYPASS, AND ULTRAFILTRATION

The Clinical Significance of the Reoxygenation Injury in Pediatric Heart Surgery

Bradley S. Allen

Figure 3. Myocardial tissue antioxidant reserve capacity as measured by amount of malondialdehyde (MDA) in animals undergoing CPB after abrupt reoxygenation at a pO₂ of 400 to 500 mm Hg, gradual reoxygenation at a pO₂ of 80 to 100 mm Hg, or leukodepletion using a white blood cell (WBC) filter. * P < .05 versus pO₂ 400 to 500.

Figure 9. Percent increase in antioxidant reserve capacity as measured by amount of malondialdehyde (MDA) in cyanotic infants after reoxygenation with CPB using pO₂ 400 to 500, pO₂ 80 to 100, or white blood cell (WBC) filtration. * P < .05.

Fallot: En pratique

Prévention du malaise Remplissage disponible rapidement (CGR/PFC)

Eviter l'hyperoxie

Cardioplégie au sang en normothermie

Support inotrope : Corotrope +/- Adrénaline

ETO systématique

Pister les complications :

Dysfonction VD +++ / VD restrictif