Imaging of coarctation and interrupted aortic arches

Dr Xavier Iriart

Department of congenital heart disease
university hospital of Bordeaux

Coarctation of Aorta: Morphology

Different morphologic patterns based on age at diagnosis

Suprasternal Long Axis

Comprehensive assessment of aortic arch

Neonatal coarctation

Aortic arch view: oblique sagittal plane

Tubular coarctation

Neonatal coarctation

Paediatric Cardiology-3rd Edition; Robert-Anderson-Edward-Baker-Andrew-Redington

Zscore <2 = hypoplastic arch

Alternative approach: left subclavian view

Neonatal coarctation: surgical planning

- Degree of aortic arch and isthmus hypoplasia varies in both length and diameter
- Different potential head and neck vessels distribution
- Consider cross sectional imaging +++

Computed tomography

Computed tomography

What the surgeon wants to know

CoA repair from left thoracotomy

Waldhausen

Tiraboshi

CoA repair from left thoracotomy

Aortoplasty from the front

Neonatal CoA: change in spectral doppler pattern

- Arterial duct widely open after birth
- Severe coarctation + PH : bidirectionnal flow
 - R to L shunt during systole
 - L to R shunt during diastole

Neonatal CoA: change in spectral doppler pattern

- Restrictive arterial or closed duct and preserved LV function
- High pressure gradient accross the CoA:
 - high velocity systolic peak
 - diastolic tail

Neonatal CoA: change in spectral doppler pattern

!! Pitfalls: typical flow can be missing

- PDA
- Multiple left heart obstructive lesions
- Low cardiac output
- Collaterals (older chidren)

Abdominal aorta Doppler evaluation

Normal

10 5 - 1.8 65 - 1.8 65 - 0.5 [m/s]

Coarctation+ PDA + PH

- Systolic wave
- No diastolic tail
- No reversed diastolic flow

- Near normal systolic flow
- Absent diastolic tail
- Slighly reversed diastolic flow

Abdominal aorta Doppler evaluation

CoA and restrictive arterial duct with preserved LV function

- Low systolic wave form amplitude
- Antegrade diastolic flow
- Phasic variations depending on LV function

CoA with closed duct and impaired LV function

- Extremely low velocity flow
- Minimal phasic variations

Pitfalls

$\Delta F = 2.Ft.v.cos\theta/c$

 ΔF : doppler shift V: blood velocity

 F_t : transmit frenquency

C: celerity (velocity of sound in soft tissue

 $\boldsymbol{\theta}$: angle between direction of US wave

propagation and blood motion

Cosinus of 90° = 0 = no signal Angle < 20° acceptable in practice

Coarctation of Aorta: Morphology

CoA of the aorta: shelf lesion

Obstruction at the site of the aortic ampulla

Coarctation ridge

CoA of the aorta: waist lesion

CoA of the aorta: waist lesion

Kinking

- Elongation and tortuosity of the terminal arch and prox Desc Ao
- Figure « 3 »
- Acute angle at the level of the duct
- No/mild pressure gradient

Kinking

- Elongation and tortuosity of the terminal arch and prox Desc Ao
- Figure « 3 »
- Acute angle at the level of the duct
- No/mild pressure gradient

DIFFERENT LEVELS OF OBSTRUCTION

- Extremely frequent >50%
- Bicuspid aortic valve
- Obstruction of LV inflow and outflow
 - Congenital stenotic lesions of the mitral valve
 - Valvar and subvalvar aortic stenosis
- Increased pulmonary rather than systemic pathway
 - > VSD (PM/Posterior malalignment)
 - > AVSD
- Complex CHD
 - > TA and VA discordance
 - DORV/TGA

courtesy Beatrice Bonello

Left SVC

Supra mitral ring

Shone complex

Imaging of coarctation and interrupted aortic arch

> Introduction and pathophysiology

imaging of coarctation

Imaging of interrupted aortic arch

Celoria and Patton classification

- -site of interruption
- -Ao arch diameter
- -Distance IAA-DescAo

Type B IAA

Aberrant origin of the subclavian artery

- Identify the 1st brachiocephalic vessel (opposite to the arch side) and IA bifurcation (RCA +RSCA)
- Lower and posterior course of aberrant RSCA relative to RCA
- Can aslo be identified arising from Desc Ao (suprasternal coronal view/ subcostal view)

Associated lesions: Conoventricular VSD

- Integral part of the type B IAA
- Posterior malalignment of conal septum
- Various degree of Subaortic stenosis
 - LVOT area < 0,7vm²/m²: predictive factor of post-op LVOTO

Surgical repair

- Conventional technique includes
 - VSD closure
 - End to side anastomosis

- The Yasui procedure includes:
 - modified <u>DKS procedure</u> to bypass the LVOTO (connecting the <u>aortic</u> and <u>pulmonary</u> <u>roots</u>)
 - Rastelli operation (RV to PA conduit)

Type A4 TAC (Van Praagh classification)

Subcostal view

Subcostal view

Parasternal short axis view

Supra sternal/ Right subclavian view

TGA+ malaligned VSD+ IAA

Conclusion

- Comprehensive assessment of Ao arch anatomy, origins of brachiocephalic vessels, isthmus, and prox desc Ao
- Assessment of flow gradients in transverse arch, arterial duct and at the coarctation site
- LV size and function
- Associated malformations

If there is coarctation look for "something else"

If there is "something else" always look for coarctation

Aknowledgements

B Bonello

P Ciliberti

J Marek

