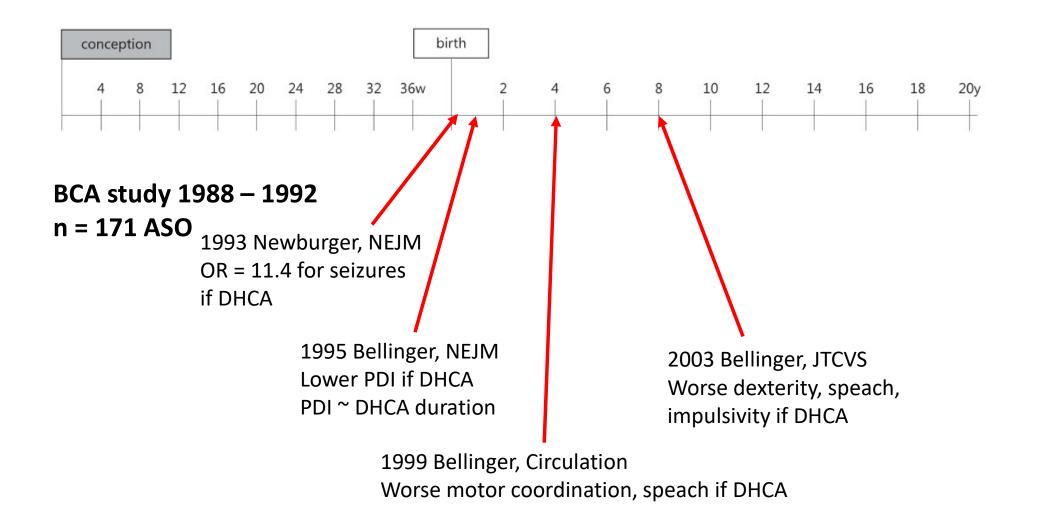
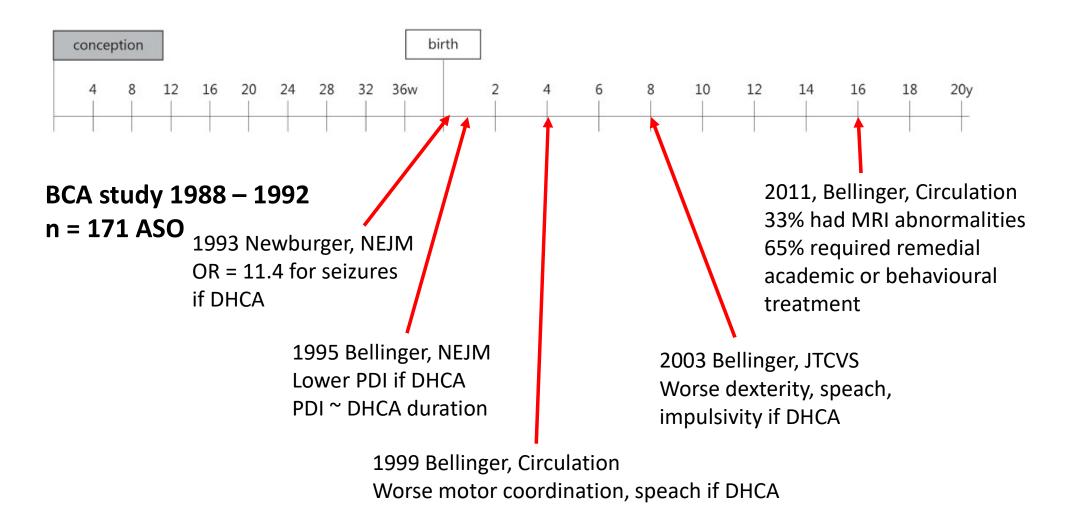
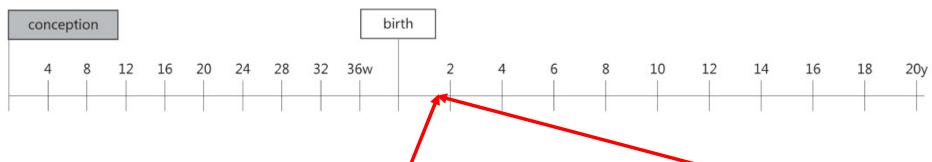
TGA: Reflections on an 'optimal' neonatal pre & perioperative management model expecting 'normal' neurologic development

Mirela Bojan, MD PhD


Marie Lannelongue Hospital


Department of Congenital Heart Disease

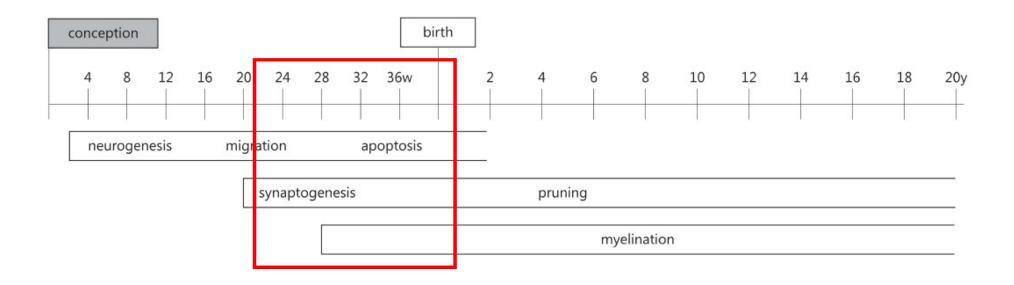
Le Plessis Robinson, France

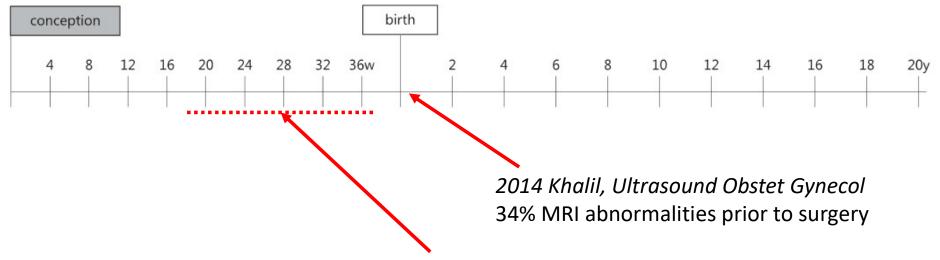

m.bojan@hml.fr

The performance of the full cohort was below expectations in many respects, including academic achievement, fine motor function, visual-spatial skills, working memory, hypothesis generating and testing, sustained attention, and higher-order language skills

ICCON (International Cardiac Collaborative on Neurodevelopment Investigators)
1996 - 2009
n = 1770, ASO = 356

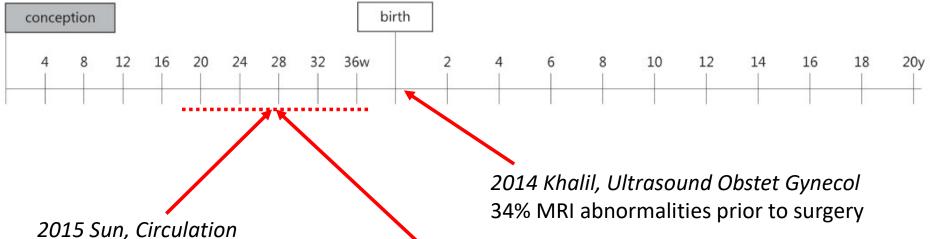
Preop factors explain about30% variability in PDI, MDI

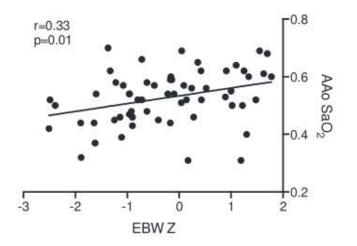

- Genetic
- Extracardiac anomaly
- Birth weight
- Center


PDI : psychomotor developmental index MDI : mental developmental index

Operative and **postop** factors explain **5%** variability in PDI and MDI

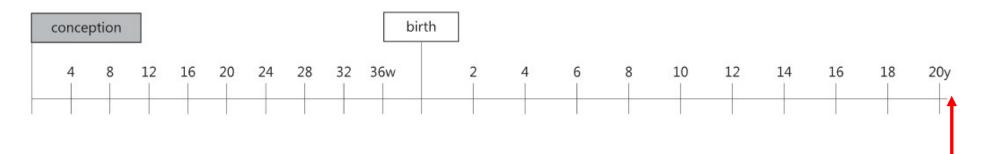
- Total support duration
- ECMO or VAD
- Hospital length of stay > 9 days


Timing of key neurodevelopmental processes in the human brain



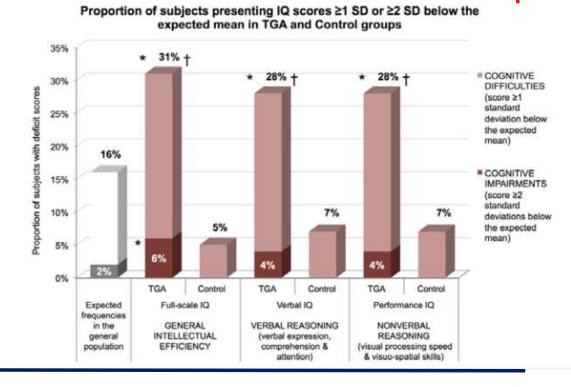
2016 Khalil, Ultrasound Obstet Gynecol 28% MRI abnormalities:

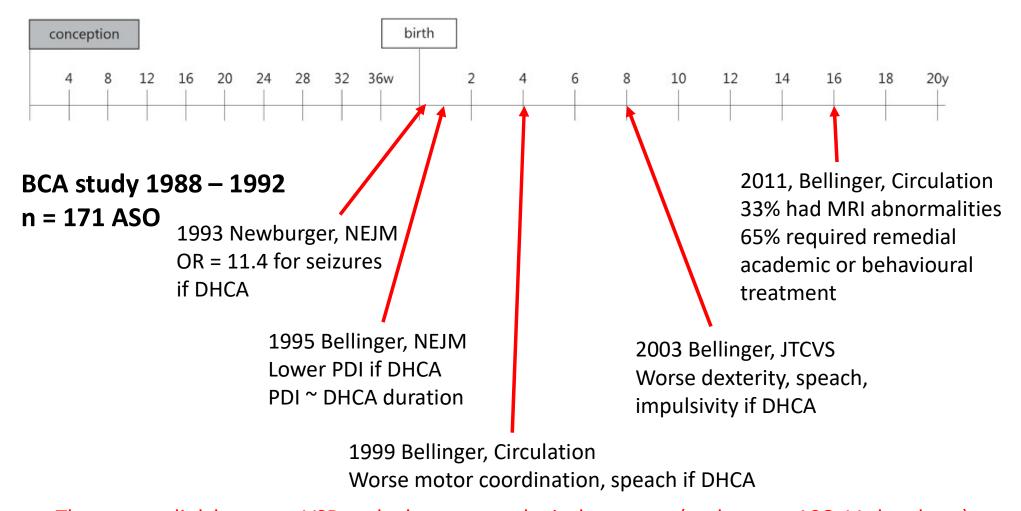
- Structural brain abnormalities
- Reduced brain volume
- Altered brain metabolism
- Decreased MCA pulsatility index



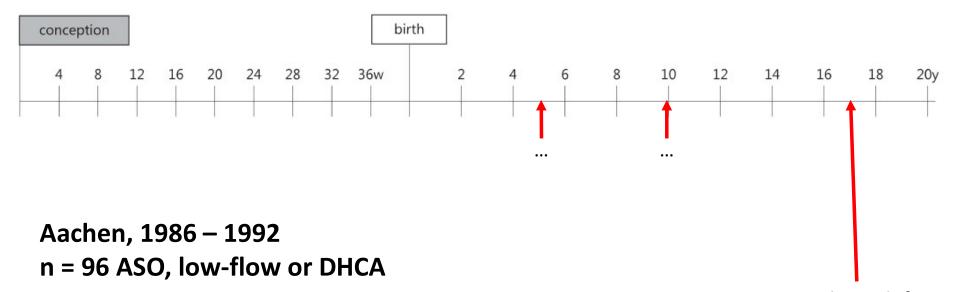
2015 Sun, Circulation SaO₂ in the ascending aorta correlates with fetal brain size

2016 Khalil, Ultrasound Obstet Gynecol 28% MRI abnormalities:

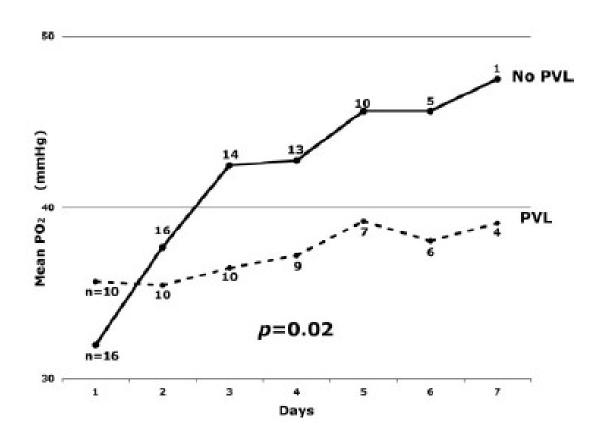

- Structural brain abnormalities
- Reduced brain volume
- Altered brain metabolism
- Decreased MCA pulsatility index



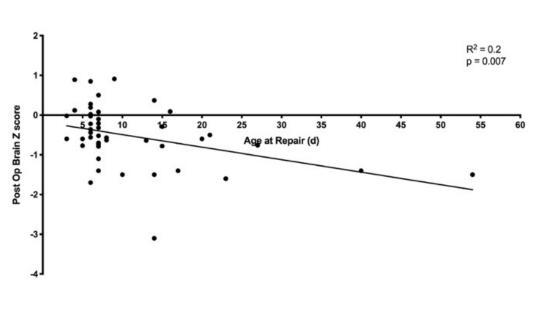
Marie Lannelongue 1984 – 1995 n = 67 ASO, 9.5% with DHCA

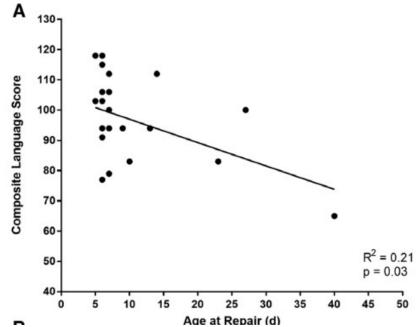

Risk factors for low IQ:

- lower parental socioeconomic and educational status
- older age at surgery
- longer hospital stay


There was a link between VSD and adverse neurological outcome (underwent ASO 11 days later)

10% neurologic deficit 14% IQ < 85, 11% IQ < 70 57.5% white matter injury 24% reduced brain volume


The only risk factor for neurologic dyfunction and MRI abnormalities was perinatal hypoxia and acidosis


Preoperative cyanosis and periventricular leucomalacia

(n = 26)

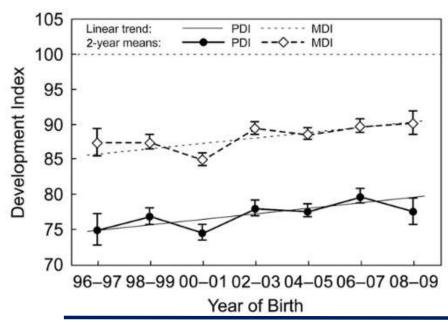
Neonatal cyanosis and adverse neurodevelopmental outcomes

(n = 45)

Neonatal cyanosis and adverse neurodevelopmental outcomes

Variables	Early (n=32)	Late (n=13)	P Value
Gestational age at birth, wk	39 (35 to 41)	39 (36 to 41)	0.44*
Prenatal diagnosis	66%	38%	0.11†
VSD requiring patch closure, individuals	3	4	1 TT-1
Birth weight, kg	3.3 (2.5–4.2)	3.4 (2.9–4.1)	1.0*
Birth weight z score	0.2 (-1.7 to 1.7)	0.1 (-0.9 to 1.4)	0.85*
Preoperative body weight z score	0.1 (-1.9 to 2.3)	0.02 (-1.7 to 1.2)	0.42*
Postoperative body weight z score	-1.1 (-2.7 to 0.8)	-1.7 (-4.6 to 0.3)	0.05*
Change in body weight z score	-1.3 (-1.7 to -0.1)	-1.7 (-4.6 to -0.4)	0.16*
Preoperative saturation, %	86 (70 to 98)	80 (74 to 93)	0.006*
Preoperative intubation, days	1 (0 to 7)	3 (0 to 21)	0.03*
Preoperative ECMO, individuals	0	4	-
Preoperative NEC, individuals	Ö	2	-

Age at arterial switch operation	7 (3 to 13)	17 (14 to 54)	<0.0001*
Cardiopulmonary bypass time, min	142 (86 to 362)	140 (84 to 197)	0.92*
Aortic cross-clamp time, min	90 (52 to 280)	80 (49 to 142)	0.61*
Deep hypothermic circulatory arrest time, min	0 (0 to 16)	0 (0 to 0)	0.58*
Total support time, min	142 (86 to 362)	140 (84 to 197)	0.92*
Open chest postoperative	44%	31%	0.02†
Days of open chest	0 (0 to 8)	0 (0 to 7)	0.49*
Days of intubation	3 (1 to 18)	2 (1 to 12)	0.47*
Total hospital length of stay, days	15 (7 to 55)	26 (8 to 106)	0.04*
Postoperative length of stay, days	10 (5,49)	11 (6 to 55)	0.44*
Incidence of seizure, individuals	1	2	-
Age at postoperative MRI, days	14 (4 to 30)	25 (21 to 70)	<0.0001
Total postoperative brain volume, mL	344 (275 to 424)	363 (304 to 408)	0.29*
Postoperative brain weight z scores	-0.4 (-1.7 to 0.9)	-0.8 (-3.1 to 0.37)	0.008


Prenatal diagnosis of TGA decreases the risk of brain injury

No. With Injury/Total No. W)	
Postnatal Diagnosis	Prenatal Diagnosis	P Value ^a
Any injury		
31/68 (46)	6/28 (21)	.03
White matter injury		
17/68 (25)	3/28 (11)	.09
Stroke		
20/68 (29)	4/28 (14)	.09
Hypoxic-ischemic injury		
1/68 (1)	0	.71

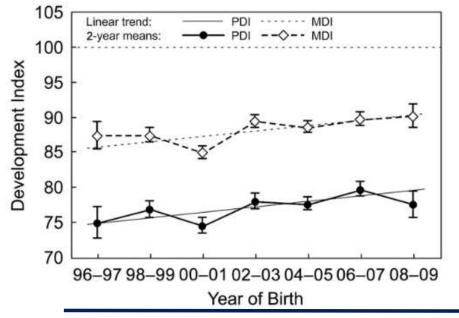
(n = 96)

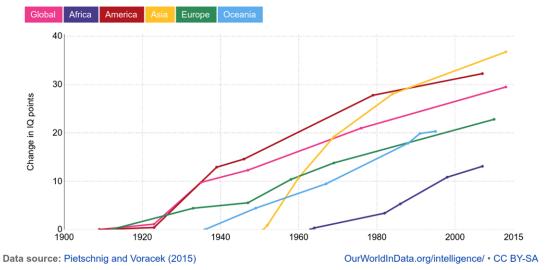
Is there evidence of improvement over time?

PDI improved by 0.39 points / year MDI improved by 0.38 points / year

2016 ICCON investigators, JTCVS

Is there evidence of improvement over time?


PDI improved by 0.39 points / year


MDI improved by 0.38 points / year

Flynn effect in the general population: +0.3 - 0.5 points / year

The Flynn Effect: Gains in mean IQ for world regions, 1909 to 2013 Our World in Data Gain in mean fullscale IQ (Intelligence quotient) for world regions.

Note: This only shows how quickly advances were being made. Cross-country comparisons are of limited usefulness in this context since the data is incomplete

2016 ICCON investigators, JTCVS

Other prospective cohorts investigate development of children with surgery for TGA, TOF and VSD

Long-term early development research in congenital heart disease (LEADER-CHD): a study protocol for a prospective cohort observational study investigating the development of children after surgical correction for congenital heart defects during the first 3 years of life

Multicenter prospective clinical study to evaluate children short-term neurodevelopmental outcome in congenital heart disease (children NEURO-HEART): study protocol

Operative management for ASO: risk factors of neurological injury

Embolic stroke: venous lines

cooling and rewarming

Inflammation: duration of CPB

transfusions

Neurotoxicity of anesthetic agents

Operative management for ASO: risk factors of neurological injury

Embolic stroke : venous lines

cooling and rewarming

Favour normothermia

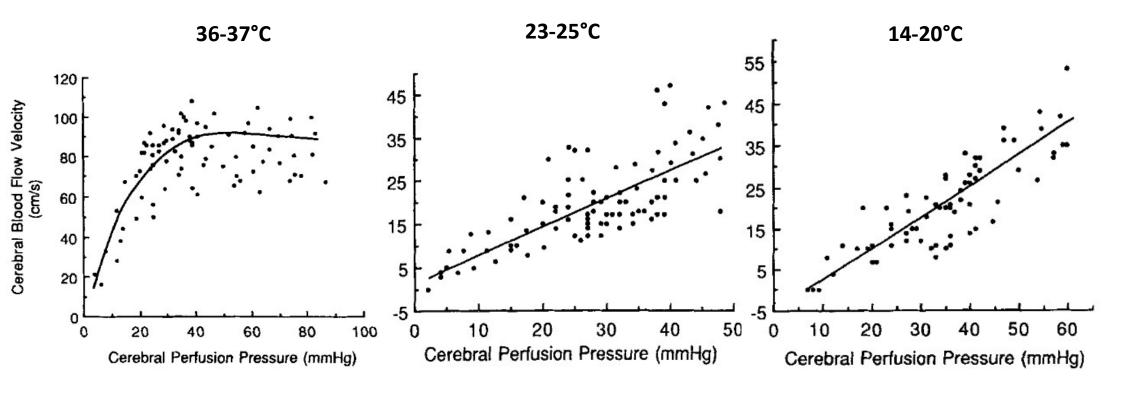
Inflammation: duration of CPB

transfusions

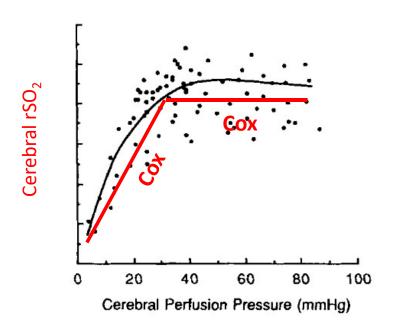
Miniaturisation of the CPB circuits

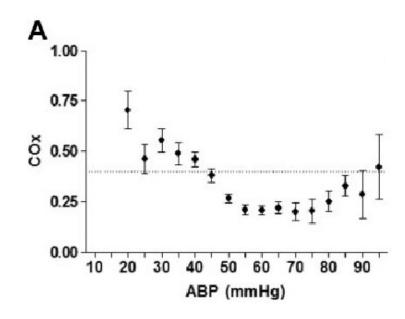
Neurotoxicity of anesthetic agents

Dexmedetomidine?

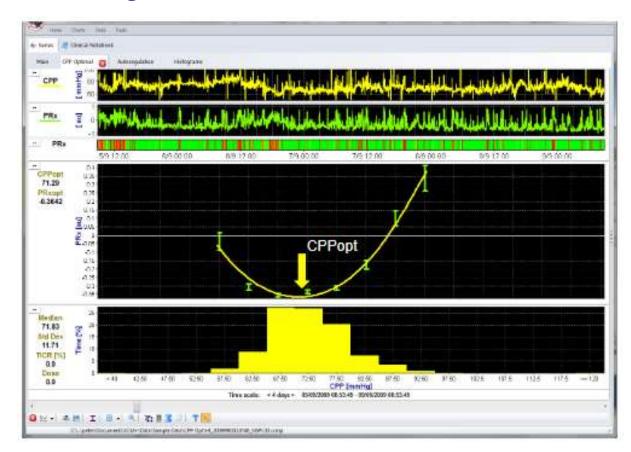

Dr Yves Durandy

Normothermia for ASO

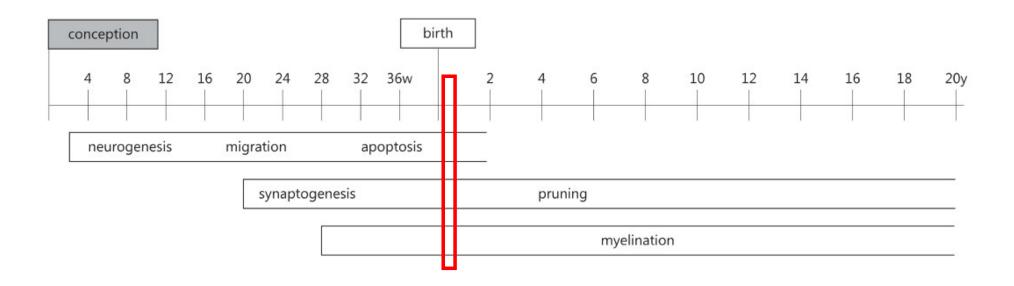

	N-CPB	H-CPB	P value	i	N-CPB	н-срв	P value
VASOACTIVE INOTROPIC SO	ORE			IN OPERATING RO	DOM (mL/kg)		
PICU arrival	9.7 ± 5.9	13.4 ± 7.9	< 0.005	RBC	8.6 ± 7.0	12.2 ± 7.0	0.007
After 4 h	7.0 ± 5.2	11.1 ± 7.3	< 0.001	FFP	3.4 ± 4.8	5.7 ± 6.8	0.034
After 24 h	2.8 ± 3.6	5.2 ± 4.9	< 0.005	Cryoprecipitate	1.3 ± 4.1	3.3 ± 5.9	0.031
ARTERIAL pH				Platelets	2.7 ± 4.9	5.1 ± 6.4	0.018
PICU arrival	7.33 ± 0.09	7.30 ± 0.09	0.046	FIRST 24h IN PICE	U (mL/kg)		
After 4 h	7.35 ± 0.07	7.32 ± 0.07	0.022	RBC	6.4 ± 9.5	7.0 ± 9.9	0.371 (NS)
After 24 h	7.37 ± 0.05	7.35 ± 0.05	0.01	FFP	4.6 ± 6.9	5.7 ± 6.8	0.202 (NS)
LACTATE				Cryoprecipitate	1.3 ± 3.2	2.7 ± 4.7	0.046
PICU arrival	1.9 ± 1.1	2.9 ± 2.7	0.01	Platelets	1.9 ± 3.6	3.6 ± 4.9	0.029
After 4 h	1.7 ± 0.6	2.4 ± 2.2	0.03	CHEST DRAINS L	OSSES (mL/kg)		
After 24 h	1.1 ± 0.5	1.6 ± 1.5	0.048	PICU arrival	1.5 ± 1.4	2.5 ± 2.7	0.013
Mechanical ventilation (hours)	22 ± 27	48 ± 57	0.003	After 4 h	7.8 ± 6.0	10.9 ± 8.7	0.025
PICU stay (hours)	61 ± 46	87 ± 69	0.021	After 24 h	23.0 ± 12.0	27.9 ± 15.2	0.043


(n = 99, 10 ASO)

CPB temperature and the maintenance of the cerebral blood flow autoregulation


Monitoring CBF autoregulation with cerebral NIRS

Monitoring CBF autoregulation with cerebral NIRS



Continuous Cerebral Perfusion for Aortic Arch Repair: Hypothermia Versus Normothermia

	Hypothermia $(\leq 28^{\circ}C)$, N = 70	Normothermia $(\ge 34^{\circ}C)$, N = 40	p Value
Cerebral perfusion			
PTFE graft	4	27	
Aortic cannulation	66	13	
Techniques of repair			
Direct anastomosis	13	20	
RV/PA conduit	30	6	
Pericardial patch	6	6 7	
Pulmonary artery patch	20	6	
Subclavian artery patch	1	1	
Status at end of operation			
Aortic clamp (min)	87.9 ± 31.2	61.7 ± 29.3	0.0001
CPB time (min)	173 ± 71.3	112.3 ± 64.8	0.0001
Flow of cerebral perfusion (mL/kg/min)	47.9 ± 23.3	52.7 ± 27.9	0.18
Perfusion pressure (mm Hg)	53.7 ± 8.3	49.3 ± 8.6	0.012
Duration of perfusion (min)	32 ± 11.9	26.3 ± 9.1	0.0015
Delayed sternal closure (%)	75	65	0.32

no clinical or electrical EEG anomaly

Anesthetic neurotoxicity in neonates

1999, Ikonomidou, Science: ketamine increases neuroapoptosis by 15 – 40 x in neonatal rats

2003, Jevotovic-Todorovic, J Neuroscience: clinical concentrations of NO₂, isoflurane and midazolam during 6 hours increase neuroapoptosis by 20 - 60 x in neonatal rats

Agent	GABA	NMDA	μ-Opioid	α ₂ -Adrenergio
Halogenated anesthetics				
(sevoflurane, isoflurane, desflurane)	+			
Nitrous oxide		_		
Benzodiazepines	+			
Propofol	+			
Barbiturates	+			
Etomidate	+			
Chloral hydrate	+			
Ketamine		<u>=2-</u> ;		
Opioids			+	
Dexmedetomidine				+

 $GABA, \gamma\text{-aminobutyric acid}; NMDA, N\text{-methyl-}D\text{-aspartate}; +, agonist; -, antagonist.$

1999, Ikonomidou, Science: ketamine increases neuroapoptosis by 15 – 40 x in neonatal rats

2003, Jevotovic-Todorovic, J Neuroscience: clinical concentrations of NO₂, isoflurane and midazolam during 6 hours increase neuroapoptosis by 20 - 60 x in neonatal rats

Agent	GABA	NMDA	μ-Opioid	α ₂ -Adrenergio
Halogenated anesthetics				
(sevoflurane, isoflurane, desflurane)	+			
Nitrous oxide		-		
Benzodiazepines	+			
Propofol	+			
Barbiturates	+			
Etomidate	+			
Chloral hydrate	+			
Ketamine				
Opioids			+	
Dexmedetomidine				+

 $GABA, \gamma\text{-aminobutyric acid}; NMDA, N\text{-methyl-}D\text{-aspartate}; +, agonist; -, antagonist.$

Neurotoxicity of anesthesia in early infancy

2009 Wilder, Anesthesiology (n = 5357)

Single anesthesia exposure < 4 years of age did not increase the risk of 5-year learning dysabilities

Repeat anesthesia: HR = 1.59

≥ 3 anesthetics : HR = 2.60

2016 Sun, JAMA, the PANDA study (n = 105 sibling pairs)
Single anesthesia exposure < 3 years of age has no impact on IQ scores later in childhood

2019 McCann, Lancet, the GAS study (CRT, n = 722):

Slightly less than 1 hour of general anesthesia exposure < 5 month of age does not alter the 5-year neurodevelopmental outcome when compared with awake spinal anesthesia

Dexmedetomidine as a neuroprotectant in anesthetic neurotoxicity

2009, Sanders, Anesthesiology

DEX attenuates iso-flurane induced neurocognitive impairment in neonatal rats

Trial record 1 of 1 for: nct 01915277

Previous Study | Return to List | Next Study

A Phase I Study of Dexmedetomidine Bolus and Infusion in Corrective Infant Cardiac Surgery: Safety and Pharmacokinetics

Postoperative management

PDI

Variable C	perative Management Final	Postoperative Final
Total support duration per m	in -0.025 [-0.042 to -0.007] (0.005)	-0.003 [-0.021 to -0.016] (0.78
ECMO or VAD	· ·	-4.5 [-8.6 to -0.4] (0.03)
Hospital length of stay, d		(<0.001)
0–9 (reference)	•	
10-15	•	-1.2 [-3.8 to 1.4] (0.37)
16–26	•	-3.7 [-6.6 to -0.8] (0.01)
27–286		-9.7 [-12.9 to -6.5] (< 0.001)

MDI

Variable	Operative Management Final	Postoperative Final
Total support duration per r	min -0.023 [-0.038 to -0.007] (0.004)	-0.008 [-0.024-0.009] (0.35
ECMO or VAD	2.4 (0.02) [0.4–4.3]	3.7 [1.6–5.7] (< 0.001)
Hospital length of stay, d	9	-6.3 [-9.9 to -2.7] (< 0.001)
0–9 (reference)	-	(< 0.001)
10-15		201621-151/-0001
16–26		-3.9 [-6.2 to -1.7] (< 0.001)
27–286		-4.2 [-6.8 to -1.7] (0.001) -7.9 [-10.8 to -5.1] (< 0.001

Conclusions

Neurodevelopmental impairment is a prevalent complication of ASO, and there has been little improvement during the last decades

Genetic abnormalities and preoperative management (duration and amplitude of desaturation) have huge impact on the future neurodevelopment

There are several advantages of providing normothermic CPB during ASO

Further investigations are necessary in order to develop a strategy to limit the neurotoxicity of anesthesia during neonatal cardiac surgery