DIU RCC

Circulation de Fontan

Dr Xavier Iriart

Fontan circulation Areas to be covered

- Key concepts for "single ventricle" physiology
- Stage 1: Shunt, banding and Norwood procedure
- Stage 2: PCPC
- Stage 3: TCPC

Single ventricle physiology

Palliation for UVH in the 1950–1960s

- large systemic to pulmonary artery (PA) shunts for adequate long-term relief of cyanosis
- dictum: "as pink as possible for as long as possible"
- few survivors beyond the 4th decade

The Fontan operation

M. Gewillig et al. Interactive CardioVascular and Thoracic Surgery 2010 Fontan et al. Ann Chir Thorac Cardiovasc 1971

UVH physiology: current strategy

- From 1990's: The staged palliation
 - early placement of a PCPC (Glenn)
- Technical modifications
 - Smaller neonatal shunt lasting few months
- Clinical outcomes improvements
- The dictum: "as blue as possible" in order to keep the ventricle maximally unloaded.

Preload : normal LV vs UVH Staged Fontan palliation

birth

Courtesy : M Gewillig

Goals of stage 1 palliation

- Balance aortic / pulmonary blood flow
- Optimize PA growth +++
- Protect from pulmonary vascular disease
- Surgical timing: limit the period of ventricular overload

Multiple bootleneck concept

good ventricular function (systolic AND diastolic)

Areas to be covered

High pulmonary blood flow PA banding

- SV-PA gradient: cw doppler (SAX/A4C). Longitudinal FU
- Pulmonary valve regurgitation: 2D/ color doppler
- Migration of PA banding: pulmonary branch distortion (RPA)

Duct dependent Pulmonary Blood Flow

- Anatomy: Atresia/Hypoplasia of Right Heart structures (Tric/ pulm Atresia)
- Immediate action to establish adequate Pulmonary Blood Flow
 - Prostaglandin to maintain ductal patency
 - Flow: Aorta to Pulmonary artery
- Subsequent need for Reliable Pulmonary Blood Flow
 - Modified BT shunt
 - PDA stent

Duct dependent Pulmonary Blood Flow

- First SPS: direct connection between SCA and ipsilateral PA
- Frequent complications
 - Unpredictibility of shunt flow
 - PA branch distortion

Systemic to pulmonary shunt

modified BT shunt: prosthetic PTFE graft (Ø3-4mm)

Innominate artery or SCA connected to ipsilateral PA branch

Echo: suprasternal frontal view/ color doppler/ CW doppler

MB'

Ao

PA

Systemic to pulmonary shunt

Imaging: CW doppler: characteristic sawtooth doppler pattern

Potential anomalies: distortion of inn Artery or PA branch, narrowing of prox or distal anastomosis (challenging)

29.87 mmH

Visualisation of shunt and PAs

- If there is doubt or for planning next stage of surgery
- CT / MRI / Catheter
- To delineate shunt and branch PA anatomy

DUCT STENTING

Pulmonary atresia with IVS. Severe hypoplastic RV. Duct dependent pulmonary flow

Weight 2kg. O2 Saturation 88% under PGE1

Stop PGE1 6h before the procedure

Discharge Day 5 O2 Sat85-90%

DUCT STENTING

DUCT STENTING

- Acute desaturation at 3 months 60 vs 85%
- Increased peak velocity from 3.5 to 5m/s

Additional stent on the aortic side

Areas to be covered

Key concepts for "single ventricle" physiology	High pulmonary blood flow
Stage 1: Shunt and banding	Duct dependent pulmonary blood flow
Stage 2: PCPC	Duct dependent systemic blood flow
Stage 3: TCPC	

Duct dependent Systemic Blood Flow

- Anatomy: large spectrum of HLHS
- Immediate action to establish adequate Systemic Blood Flow
 - Prostaglandin to maintain ductal patency (R to L flow)

- Subsequent need for **Reliable** systemic circulation
 - Norwood/Hybrid for HLHS
- Balloon or Surgical Aortic Valvotomy in Critical AS

Palliative approach in HLHS

Post Norwood stage I echocardiography

Sequential segmental analysis

- Atrial septectomy
- Tricuspid valve function
- RV function
- DKS anastomosis
- Neoaortic arch
- Systemic to pulmonary artery shunt

Assessment of atrial septum

- Crucial for decision-making in the immediate post-natal period
- Subcostal view: color doppler

RV-PA Conduit

Assessment of TR

- Semi quantitative assessment (mild, moderate, severe)
- Consider change in loading conditions

Eyeballing of RV contraction

• Strain analysis

Asessement of DKS anastomosis

• Coronary blood flow is retrograde

Asessement of DKS anastomosis

- DKS anastomosis
- Neoaortic valve regurgitation

Neoaortic arch obstruction

- suprasternal sagittal view
- Increased flow velocity potentially related with change of caliber between large reconstructed neotransverse arch and native descending aorta

Neo aortic arch obstruction

		E A LOUIS E
ntire volume	OW 248	c
Sc 22.1 Dt 000 ms FFE/M	OL 778	W

Different shunt types

RV to PA conduit

RV-PA Conduit

Hybrid palliation

create a balanced physiology where the single RV supplies the systemic and the pulmonary circulati complex aortic arch reconstruction (including CPB) is postponed to the stage 2 (Glenn)

Hybrid procedure

Restrictive PFO in HLHS

Same patient post balloon atrial septostomy

Glenn anastomosis

Assessment of the Glenn anastomos

- Suprasternal / high parasternal view
- Laminar flow of low velocity with respiratory variation (adapt the velocity range+++)
- Rule out stenosis at the anastomosis site

Look at the portion of the PA behind the reconstructed neo aorta

stage 3: TCPC

- SVC and Glenn anastomosis
- IVC to PA conduit assessment
- Conduit fenestration
- IVC and HV flow
- Thrombus in the Fontan pathway

TCPC

Proximal connection subcostal view

Conduit to PA distal connexion: high parasternal view

IVC flow after TCPC

• Normal: continous anterograde flow of low velocity, respiratory variation

- Retrograde A wave:
 - failing fontan (**7**CVP-arrythmia)

- Retrograde S wave:
 - AV regurgitation: IVC
 - Antegrade flow (pulm stenosis): SVC

Failing fontan IVC doppler pattern

Fenestration assessement

- Right to left shunt
 - Decompress the systemic venous pathway
 - Maintain cardiac output

Hijazi et al. Circulation 1992

Fenestration assessement

- Mean fenestration gradient = Transpulmonary gradient
 - Mean gradient over several cardiac cycles

20 75% C 50 P Arret Ress Coul 77%
P Arret Ress Coul 77%
P Arret P Arret Ress P Arret R

CI 22Hz 13cm

TOE guided-Percutaneous fenestration

Percutaneous fenestration guiding

sessment

SV AFTERLOAD

6. Systemic outflow tract

7.Aorta

Assessment of DKS anastomosis

Exemple of a DKS anastomis in DILV with restrictive bulboventricumar foramen

Restrictive systemic outflow tract in DILV

- Proximal anastomosis
 - Restritive bulboventricular foramen: DKS

Aortic arch assessment

Distal anastomosis

- Supra sternal sagital view
- Potential increased velocity (HLHS)
- Pitfall: potential absence of diastolic runoff
 - change in Ao arch geometry/ patch/mBTshunt

essment

------aphic assessment

LPA

8.Systemic ventricular function

- Systolic and diastolic(+++) function
 - No single morphology
 - Important confunding variables
 - Preload (surgical stage/ AVVR/ PVR/PA compliance)
 - Afterload (restrictive outflow trat, CoA)
 - Eye balling/ EF (TM, 2D) / myocardial deformation

Diagnosis and managment of post operative complication Pleural/abdominal effusion: multifactorial+++

SV dysfunction

Thrombosis

Abnormal cyanosis

SV dysfunction

Restrictive bulboventricular foramen Increased AFTERLOAD

LV spherical remodeling : secondary MR worsening

Thrombosis in TCPC

- Systemic venous pathway (TCPC)
 - IVC, RA (atriopulmonary connection), lateral tunnel/ conduit, fenestration, PAs, SVC
- Intra cardiac chambers
 - Intracardiac: LA, LAA, SV (poor systolic function)
- Native PA trunk
 - PAs divided and pulm valve non sutured

Thrombotic complications

DCPT : thrombose du tube extra-cardiaque Atrésie tricuspide {S,D,S}

Abnormal cyanosis after BCPC

- Reopening of decompressing veins from SVC
 - In the IVC: azygos vein
 - In the atria: left SVC
 - Diagnosis:
 - Suprasternal frontal view
 - color doppler/ saline contrast

Abnormal cyanosis after BCPC

• Pulmonary AV malformations

- heterotaxy syndrome
- Lack of hepatic factor
- Diagnosis: saline contrast

Persistent cyanosis after TCPC

- Conduit fenestration
 - Balance between PVR and early diastolic function
- Systemic venous pressure> pulmonary vein pressure
 - VV collaterals to pulmonary veins or systemic atrium
 - origin: LSVC, RSVC, inn Vein, hepatic veins
- Baffle leaks (intra cardiac type of connection)

Superior veno venous collateral

• Left « SVC » to the RA

Inferior veno venous collateral

- HLHS S/P TCPC. Persistant mild hypoxemia
 - Shunt between HV and cardiac veins

Conclusion

Understand Fontan physiology is key.

Echo:Easily accessible and costeffective tool: Sequential segmental analysis to not miss a treatable lesion

Good assessment of the Fontan pathway in children but may be limited in adults. CT and MRI +++

Global clinical assessment is mandatory: extracardiac complications drive the prognosis

UVH systolic and diastolic function assessment is challenging. Spot extra cardiac targets and AVV dysfunctions

Merci

